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Abstract—We propose a bottom-up power line communication
(PLC) channel simulator for networks that deploy multicon-
ductor cables and allow establishing a multiple-input multiple-
output (MIMO) communication link between two nodes. We
show that the fundamental multiconductor transmission line
(MTL) relations are a matrix form extension of the two-conductor
transmission line equations, and that they allow the application
of the voltage ratio approach (VRA) for the computation of the
channel transfer function (CTF). Thus, any complex network
can be remapped to obtain a simple representation in terms of
MTL elementary units. Then, the MIMO CTF is computed as
the product of the insertion loss of the units.

We discuss the analytical computation of the per-unit-length
(p.u.l.) parameters for two electrical cables, that we refer to as
symmetric and ribbon. Further, we propose to use an improved
cable model for ribbon cables that accounts for the dielectric
non-uniformity. We report the comparison between simulation
and experimental measures for two test networks. The results
are in good agreement. This validates the proposed MIMO PLC
channel simulation approach.

Index Terms—Power line communications, channel modeling,
MIMO, multiconductor transmission lines.

I. I NTRODUCTION

POWER LINE communication systems are gaining high
research and development interest because they can pro-

vide communication services by the exploitation of the large
existent power line infrastructure both in outdoor and indoor
scenarios. In particular, wide band state-of-the-art in-home
PLC systems deliver high speed services via signal transmis-
sion over two conductors, i.e., the phase (hot) and the neutral
wires, in the 1-30 MHz band [1]. To increase data rates beyond
what it is offered today, larger bands should be used and/or
advanced spectrally efficient transmission techniques should
be developed.

Many power line networks deploy multiconductor cables.
For safety reasons, in many countries the electrical regulations
impose the use of a third conductor, typically referred to
as protective earth (PE). The presence of a third conductor
allows, in principle, establishing two parallel communication
channels between the transmitter and the receiver. In general,
with M conductors,M − 1 communication channels are
available between two nodes, which suggests the use of some
form of multiple-input multiple-output communication. MIMO
communications have attracted considerable attention in the
wireless scenario, where multiple antennas are available.In
this context, a great amount of research has been carried out
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to design spectral efficient modulation and coding techniques
that are referred to as space-time and space-frequency cod-
ing techniques. Some early work on space-frequency coding
algorithms for PLC has been reported in [2].

An important aspect is the characterization and modeling
of PLC channels for the design and performance analysis
of communication algorithms. Although several results about
channel modeling for single-input single-output PLC channels
are available, not many results are yet available for MIMO
PLC channels. Deterministic bottom-up channel models for
two-conductor PLC networks are described in [3] - [4]. They
exploit transmission line (TL) theory under the transverse
electromagnetic (TEM) or quasi TEM propagation assump-
tion. They further require the knowledge of the topological
information. Some work has also been done to provide a
bottom-up statistical PLC channel model in [5]. More recently,
a statistical model for in-home topologies combined with a
bottom-up channel transfer function computation has allowed
the realization of a statistically representative channelgenera-
tor [6] - [7].

Besides the experimental MIMO channel characterization
as it was done in [8] - [9], it is important to develop a model
and a simulator for the CTF between two given nodes of a
certain network taking into account for all the reflection and
transmission effects that are due to line discontinuities.In
[10], a bottom-up MIMO PLC channel simulator has been
described. It is the MIMO extension of the two-conductor
TL theory channel simulator presented in [4], which in turn
exploits the method of the modal expression for the electrical
quantities.

In this paper, we propose a bottom-up channel simulator that
allows for the computation of the MIMO CTF for complex
networks by exploiting the MTL theory concepts [11] under
the TEM or quasi-TEM assumption. The method is inspired
by the approach that we have presented in [3] for the two-
conductor case. In detail, we show that the MTL relations
of the method are a matrix form extension of the two-
conductor TL equations. Furthermore, to simplify the problem,
we propose to remap the network between the transmitter and
receiver nodes in order to obtain a simple representation in
terms of MTL elementary units. Then, the MIMO CTF is
computed as the product of the insertion loss matrix of each
MTL unit.

The analytical computation of the per-unit-length cable
parameters, considering both a symmetric structure and a
planar structure (ribbon cable), is also provided. To this end,
we focus on three-conductor cables. We report both simulation
and experimental measurements for two test networks, one
without branches and one with a branch. We show that while
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for the symmetric cable we obtain good agreement between
the simulated and the measured results, with ribbon cables
some more pronounced mismatches are found. Therefore,
we propose to use an improved cable model that takes into
account the non uniformity of the insulation material [12].
With this model, close matching between the simulation and
experimental results is found.

The paper is organized as follows. In Section II, we summa-
rize the MTL theory concepts and we derive the fundamental
matrix form equations of the voltage ratio approach. In Section
III, we address the cable models and we provide a comparison
between the simulated and the experimental results. In Section
IV, we discuss the effect of non-idealities and we improve
the model taking into account the dielectric inhomogeneities.
Finally, the conclusions follow.

II. A NALYSIS OF THE MTL CONFIGURATION

We herein describe an MTL model for the simulation
of MIMO in-home power line channels. We firstly report
the fundamental MTL relations and we show that they are
a matrix form extension of the two-conductor transmission
line equations. Then, we propose an efficient method for the
computation of the MIMO channel transfer function between
pair of nodes in any complex power line network that deploys
multiconductor cables. The method is based on a voltage ratio
approach. For clarity, we first address the three-conductorcase.
Then, we consider the general multiconductor case.

A. Three-Conductor Transmission Line Equations

Several power line wiring installations use three identical
wires, namely the phase, neutral and protective earth, thatcan
be, in first approximation, modelled as parallel good conduc-
tors sheathed in a dielectric material and nearby placed. For
instance, in Greece compact cables with conductors enclosed
into a PVC cap are deployed [13]. In Italy, three conductors
are individually insulated and placed inside small raceways.
Some other countries deploy also ribbon cables.

In all cases, the transversal dimension of the overall ca-
ble structure is relatively small w.r.t. the transmission signal
wavelength in the range of frequencies that we consider, i.e.,
in the lower GHz range. Therefore, we can make the TEM
or quasi-TEM mode assumption [14], and we can adopt the
per-unit-length parameter model also for non ideal cables [14].

In Fig. 1, we show a line section of three conductors of
length ∆x, whereri, lk, gk, ck with i ∈ {0, g, r} and k ∈
{g,m, r} denote the p.u.l. resistance, inductance, conductance
and capacitance. The p.u.l. inductancelm, capacitancecm
and conductancegm take into account the mutual interactions
between conductors. The bottom conductor is assumed to be
the neutral, while the middle and the upper most conductors
are respectively, the PE and the phase. We assume the neutral
to be the reference conductor, and the phase and PE currents
to return through the neutral conductor. Consequently, two
different circuits sharing the same return conductor can be
defined. Coupling effects provide interactions between them,
therefore by transmitting and receiving on both the circuits,
a 2 × 2 MIMO system is defined. The first circuit comprises

Fig. 1. Per-unit-length equivalent model of the three conductor line.

the phase and the neutral wires. We refer to it as generator
circuit. The second circuit comprises the PE and the neutral
wires. We refer to it as receptor circuit.

Now, in order to provide a steady-state analysis, we use
the phasor representation for electrical quantities. We denote
with Vk(f, x), for k ∈ {g, r}, the voltage phasors associated
to the generator circuit and the receptor circuit at frequency
f and coordinatex. Thus, the voltage in sinusoidal regime
is vk(x, t) = Re{Vk(x, f)e

j2πft}. To simplify the notation,
we do not explicitly show the frequency dependency in the
following. Therefore, we simply writeVk(x). By letting∆x →
0 in Fig. 1, we obtain the telegraph equations in the frequency
domain, that read as follows

∂V(x)

∂x
= −

(

R+ j2πfL
)

I(x) , (1)

∂I(x)

∂x
= −

(

G+ j2πfC
)

V(x) , (2)

where V = [Vg, Vr]
T is the voltage phasor vector,I =

[Ig, Ir]
T is the current phasor vector and{·}T denotes the

transposition. Furthermore,

R =

[

rg + r0 r0

r0 rr + r0

]

, L =

[

lg lm

lm lr

]

,

C =

[

cg + cm −cm

−cm cr + cm

]

, G =

[

gg + gm −gm

−gm gr + gm

]

,

are the p.u.l. parameter matrices for the resistance, inductance,
capacitance and conductance, respectively.

Now, if we define the impedance and the admittance matrix
as Z = R + j2πfL and Y = G + j2πfC , respectively,
by means of a first derivative and a substitution we obtain the
MTL equations

∂2
V(x)

∂x2
= ZY V(x) , (3)

∂2
I(x)

∂x2
= YZ I(x) , (4)

that are coupled by the boundary line conditions, and thus we
can focus only on a single one. Considering (4), we can use
the eigenvalue decomposition to obtain

YZ = T

[

λ1 0

0 λ2

]

T
−1 = TΛT

−1 , (5)

whereT andΛ are the eigenvector and eigenvalue matrices of
YZ, respectively. Then, we diagonalize (4) defining the modal
current vectorIm = T

−1
I such that

∂2
Im(x)

∂x2
= ΛIm(x) . (6)
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Now, due to the diagonal nature ofΛ, the resultant system
comprises two uncoupled equations that can be independently
solved leading to

Im(x) =

[

e−γ1x 0

0 e−γ2x

]

I
+
m +

[

eγ1x 0

0 eγ2x

]

I
−

m , (7)

where I
+
m and I

−

m are vectors whose coefficients are de-
termined from the boundary conditions, andγ1, γ2 are the
propagation constants obtained from the diagonal elements
of Λ. In detail, we define the propagation constant matrix
Γ = diag{γ1, γ2}, as the one for whichΓΓ = Λ. Finally, we
exploit the relationI = TIm to obtain the expression for the
current phasor vectorI and the voltage vectorV that read

I(x) = TIm = T

(

e
−Γx

I
+
m + e

Γx
I
−

m

)

, (8)

V(x) = Y
−1

TΓ

(

e
−Γx

I
+
m − e

Γx
I
−

m

)

, (9)

respectively. The voltages and the currents maintain the same
structure of the two-conductor line case, i.e., both are ex-
pressed as the superposition of the transmitted and reflected
waves.

To proceed, we firstly define the characteristic impedance
matrix of the multiconductor transmission line asZC =
Y

−1
TΓT

−1. Then, we define the load reflection coefficient
matrix as the matrixρLI

such thatI−m = ρLI
I
+
m, where the

subscript{·}I is used in the notation to recall that we are
dealing with currents. Finally, from (8)-(9), it follows that

I(0) = T(U+ ρLI
)I+m , (10)

V(0) = ZCT(U − ρLI
)I+m , (11)

whereU is the identity matrix of size2× 2, and we assume
that the load is placed at the coordinatex = 0.

Now, we define the load admittance matrixYL as the matrix
such thatI(0) = YLV(0), and thus we rewrite the reflection
coefficient matrix as

ρLI
= T

−1
YC

(

YL +YC

)

−1(

YL −YC

)

ZCT , (12)

whereYC = Z
−1

C . Furthermore, onceYL is known, we can
also determine the admittance matrixYR(x) at coordinatex
as the matrix that satisfies the relationI(x) = YR(x)V(x).
YR(x) can be interpreted as the load admittance carried back
at coordinatex. Combining (8)-(9), it follows that

YR(x) = T
(

e
−Γx + e

Γx
ρLI

)

×
(

e
−Γx − e

Γx
ρLI

)

−1
T

−1
YC . (13)

This final relation will be exploited in the next section for
the development of a CTF simulator for complex in-home
networks that comprise several branches and loads.

B. Voltage Ratio Approach for Three-Conductor Networks

Our objective is to compute the MIMO channel transfer
function of any pair of nodes in power line networks that
comprise multiconductor lines and several branches and loads.
We propose to compute the CTF via an MTL extension of
the algorithm presented in [3] for the two-conductor case. We

1
YB 1l

1
ZC

1γ

,1
ρ

IL
Y

NB Nl

Z
NC

γN

,
ρ

I NL

unit N 1unit

1
YIY

NI

1x1Nx -

tr
a
n
sm
it
te
r
p
o
rt

re
ce
iv
er
p
o
rt

0xx axis

1unit N -

1
Y

NB -
1Nl -

1
Z

NC -

1γN -

, 1
ρ

I NL
-

1
Y

NI -

Nx

Fig. 2. On top, unifilar description of a topology remapped inunits. On
bottom, equivalent representation of the units in admittance matrix terms.

firstly remap the MTL network into a backbone and into a
set of branches that depart from intermediate nodes of the
backbone. The backbone is the shortest signal path between
the transmitter and the receiver. Fig. 2 shows an example of
a remapped network where each backbone branch comprises
sub-branches and loads at the terminal nodes.

We can model the whole branch (single or multi level) that
departs from the backbone nodenb as an equivalent admittance
directly connected tonb. Strictly, the equivalent admittance
matrix YBb

is obtained by carrying back the terminal loads
(comprising open loads) up to the backbone node. To this
aim, we recursively apply (13). The final result is a simple
representation of the network seen by a pair of nodes, namely,
an MTL backbone with a number of admittances in certain
points.

To proceed, we split the backbone intoN small elements
called units. In Fig. 2, we show an example of unit represen-
tation of the network. We use thick and thin lines to represent
physical wires and zero-length connections, respectively. The
coordinates on thex axis refer to the position of the backbone
nodes. Each unitb = 1, . . . , N contains an homogeneous
piece of backbone line and the equivalent admittance of the
branch connected to the nodenb. We conventionally start the
unit numeration from the receiver end. We also denote with
ZCb

, Γb, lb and ρLI,b
, the characteristic impedance matrix,

the propagation constant matrix, the length of the piece of
backbone line, and the load reflection matrix of the unitb,
respectively. The latter is given by (12). Further, we referto
YLb

andYIb as the load and the input admittance matrices
of the unitb, respectively. The first is the receiver admittance
matrix whenb = 1, otherwise it is the input admittance matrix
of the unitb− 1. The latter is the sum of the load admittance
matrix YLb

carried back at the input port of the unitb, and
the branch admittance matrixYBb

.
Now, from (9) and (11), the voltage vector at nodenb can

be written as a function of the voltage vector at nodenb−1

yielding

V(xb) = ZCb
Tb

(

e
Γblb − e

−ΓblbρLI ,b

)

×
(

U− ρLI ,b

)

−1
T

−1

b Z
−1

Cb
V(xb−1) . (14)

By definition, the MTL CTF of a given unit is the voltage
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insertion loss between the two ports of the unit, namely,

V(xb−1) = HbV(xb) . (15)

Thus, from (14) it follows that

Hb = ZCb
Tb

(

U− ρLI ,b

)

×
(

e
Γblb − e

−ΓblbρLi,b

)

−1
T

−1

b Z
−1

Cb
. (16)

Now, we define the voltage phasor vectors at the transmitter
and receiver nodes asV(xN , f) and V(x0, f), respectively.
We explicitly show the frequency dependency of the quantities.
Hence, if we denote withH(f) the overall MTL transfer func-
tion (insertion loss), we obtainV(x0, f) = H(f)V(xN , f).
Finally, by recursively applying (15), the CTF can be com-
puted as follows

H(f) =
N
∏

b=1

Hb(f) , (17)

i.e., the product of the CTF of the units. We refer to this
method as MTL voltage ratio approach.

C. Application of the VRA and Complexity Analysis

In order to detail the application of the VRA, we firstly
apply it to the branched test network shown in Fig. 3(b). We
start dividing the network in units. According to the notation
of Fig. 2, two units exist. The first includes the line of length l3
and the branch terminated intoYbr . The second unit comprises
the piece of backbone line of lengthl1. For the first unit, we
have to calculate the insertion loss and the input admittance
matrix. To this end, we compute twice the relations (12)-(13),
once the relation (16), and then, at the input port of the unit,
we sum the equivalent admittance matrices of the branch and
the receiver. The second unit is rather simple since no branches
are present, and thus we only need to compute (12) and (16)
once. Finally, the overall CTF is given by (17).

Now, if we consider a more complex network, we can still
divide it into units, and then, for each unit, we compute the
same relations applied before to the branched test network.
Therefore, the number of relations to be solved by the VRA
scales linearly with the total number of network units.

For the sake of comparison, we can consider the method
proposed in [10], which is in general more complex because
it does not consider the division of the network in units as
we instead propose. However, it can be also applied once the
network is divided into units. In such a case, the number of
relations to be solved for a given unit is similar in method [10]
and in our method. However, the computation of the relations
requires a higher number of scalar operations (additions and
products) per unit in the method [10] compared to the VRA.
As an example, for the network of Fig. 3(b) the method in
[10] runs approximately3% more operations than the VRA.
It follows, that also for more complex networks the VRA
maintains some complexity advantage.
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Fig. 3. Equivalent representation of the two test networks.

D. Multiconductor Extension of the VRA

Although the three-conductor case is the most frequent in
in-home PLC networks, the VRA can be easily extended
whenM > 3 conductors are present, e.g., in multiple phase
networks. In this case,M − 1 communication channels are
available. By knowing the p.u.l. parameters of the cables, we
derive the relations (3)-(4) of sizeM−1. Then, we diagonalize
the system of equations through the eigenvalue decomposition
so that the results of Section II-A are still valid, and the VRA
of Section II-B is applicable.

III. VALIDATION OF THE MODEL

In this section we report experimental results in order to
validate the analytical approach that we have proposed. We
consider two test networks that are depicted in Fig. 3. In
the first network, we consider the transmitter and the receiver
directly connected via a three-conductor homogeneous piece
of line, i.e. the backbone. In the second network, we evaluate
the effect of a branch connected to the backbone. We refer to
the two networks as single section and branched, respectively.
The cable geometries of Fig. 4 are considered, i.e., a sym-
metric cable and a planar (ribbon) cable. The geometrical and
electrical properties of the cables are summarized in TableI,
while the lengths of the MTL lines are reported in Table II.
We terminate the branch into a load whose admittance matrix
reads

Y
br =

[

Y br
g 0

0 Y br
r

]

=

[

1/50 0

0 0

]

. (18)

The measurements have been made in the time domain using
a signal pulser and a two channels digital oscilloscope with
50 Ω input impedance. This realizes a form of single-input
multiple-output (SIMO) transmission since the transmitter
(signal pulser) is connected to a pair of conductors, e.g.,
the phase and neutral, while the receiver captures both the
signals between the phase and neutral, and between the PE
and neutral. The frequency response, up to 80 MHz, has been
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TABLE I
PARAMETERS OF THE CABLES

Type
rw / rd / d

ns / ne

σc / σd

(mm) (S/m)

Symm. 0.69 / 1.5 / 3.1 16/6
5.8 · 107/10−5

Ribbon 0.79 / 1.6 / 3.4 15 / 13

TABLE II
CIRCUIT CABLE LENGTHS

l1 l2 l3

(m) (m) (m)

5.22 2.30 3.60

obtained via discrete Fourier transform with a frequency step
size of50 kHz.

We model the receiver as a quadripole with a shared
reference conductor and two admittances connected at the
end of the receptor and generator circuits, respectively. Thus,
the admittance matrix of the receiver can be written as
Y

rx = diag{Y rx
g , Y rx

r }, where we conventionally setY rx
g =

Y rx
r = 1/50 S. We also terminate the receptor circuit at the

transmitter side intoY tx
r = 1/50 S. It follows that both ends

of the receptor circuit are connected to an admittance of the
same value.

We define the “direct” insertion lossHd(f) as the ratio
V rx
g (f)/V tx

g (f), and the “coupled” insertion lossHc(f) as the
ratioV rx

r (f)/V tx
g (f). Then, the SIMO insertion loss vector is

HSIMO(f) =

[

Hd(f)

Hc(f)

]

=

[

V rx
g (f)/V tx

g (f)

V rx
r (f)/V tx

g (f)

]

. (19)

Now, we refer to

YIN (f) =

[

YI11(f) YI12(f)

YI21(f) YI22(f)

]

(20)

as the input line admittance matrix at the transmitter side.
According to the notation of Fig. 3, it follows that

[

Itxg (f)

Itxr (f)

]

= YIN (f)

[

V tx
g (f)

V tx
r (f)

]

. (21)

Furthermore, the current and the voltage at the transmitter
side of the receptor circuit are related as follows,Itxr (f) =
−Y tx

r V tx
r (f). Therefore, from (21) we obtain

V tx
r (f) = − YI21 (f)

YI22(f) + Y tx
r

V tx
g (f) (22)

Finally, from (17) and (22) we can reformulateHSIMO(f) as

HSIMO(f) = H(f)α(f) , (23)

whereα(f) =
[

1 − YI21 (f)/(YI22(f) + Y tx
r )

]T
takes into

account for the boundary condition at the transmitter side of
the receptor circuit.

In the following, we firstly discuss how to obtain the p.u.l.
parameters for the cable geometries herein considered. Then,
we compare the simulations with the experimental results.

wr

d
d

wr

1 2 3

dr

(a) Symmetric (b) Ribbon

Fig. 4. Cross sections of the two considered cables.

A. P.u.l. Parameters for the Symmetric Cable

The computation of the p.u.l. parameter matricesR, L, C
andG can be done in an analytical way for the symmetric
cable geometry shown in Fig. 4(a). We further assume the
general case of stranded conductors that are independently
sheathed and then enclosed into a second PVC cap. The
inter-distance between the conductors is constant. We also
approximate the dielectric as homogeneous since the three-
conductor structure is typically compact.

To determine the p.u.l. resistance of a stranded conductor,
we follow the approach in [15], where the resistance of a solid
core conductor is divided by a correction coefficientXR, i.e.,
r = rsolid/XR with

rsolid =

{

1/(σcπr
2
w) δ >> rw ,

√

µ0f/(4σcπr2w) δ << rw ,
(24)

whererw is the radius of the solid core conductor,σc is the
conductivity,δ = 1/

√
πµ0fσc [14] is the skin depth withf

being the frequency andµ0 being the vacuum permeability.
Therefore,XR is the ratio between the areas interested by

the flow of the current in the stranded wire and in the solid
core conductor. Further, the current is supposed to flow only
in thene outermost conductors of the stranded wires. Thus, it
follows that [15]

XR = ne

cos−1( rs−δ
rs

)r2s − (rs − δ)
√

r2s − (rs − δ)2

2rwδ
, (25)

where ne and rs denote the number of strand wires that
constitutes the outer ring and their radius, respectively.In
particular, we computers asrs ≃ rw/

√
ns wherens denotes

the total number of strands that make up the conductor core.
The correction factor is derived assuming that the solid-
core conductor has a non perfectly circular cross section
(corrugated circle) due to the outer ring of thin wires. We
point out that in [11] another approach is followed. It consists
in dividing the p.u.l. resistance of a solid wire by the number
of strands. However, we have found through measurements
that the approach in [15] performs better.

Assuming that the phase, neutral and ground wires have
the same geometrical and electrical properties, we have that
rg = rr = r0 = r . Conversely,L, C and G depend in
general on the overall geometry of the cable, i.e. the distance
between conductors. However, under the assumption of an
homogeneous dielectric, the p.u.l. parameter matrices fulfill
the following relations [14]

LC = µ0ε0εrU (26)

LG = µ0σdU (27)
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where ε0, εr and σd are respectively the vacuum dielectric
constant, the relative dielectric constant, and the conductivity
of the dielectric among conductors, whileU is the 2 × 2
identity matrix. Thus, for each cable we only need to compute
the p.u.l. inductance matrix, since theC, G matrices are
consequently defined from (26)-(27). Due to the nature of
the structure and according to the notation of Fig. 4, it is
immediate to verify that

lg = lr = 2lm =
µ0

π
log

(

d

rw

)

,

wherelm takes only into account for the external inductance,
i.e., it neglects the internal inductance of a non-null section
cable [14].

To compare the simulation results with the experimental
ones, we have used the electrical constants presented in Table
I. The frequency-dependent dielectric constant can be obtained
from the measurement of the speed of lightv(f) asεr(f) =
1/(ε0µ0v(f)

2). Via measurements, we have found thatεr(f)
can be approximated as

εr(f) =
1.6661 · 10−6

f
+ 2.9701 . (28)

B. Comparison between Simulations and Measurements for
the Symmetric Cable

In the following, the amplitude and phase of the channel
transfer functions are defined asAk(f) = 20 log10(|Hk(f)|)
andϕk(f) = ∠Hk(f), respectively, wherek ∈ {d, c} denotes
the direct and coupled channel in a SIMO configuration. When
symmetric cables are used in the single section test network,
the p.u.l. parameters are the same for the generator and the
receptor circuit. Thus, identical results are found whether we
transmit between the phase and neutral conductor or between
the PE and neutral conductor.

In Fig. 5, we compare the simulated results with the
experimental ones for the single section test network. The
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Fig. 6. Comparison between the simulated (circle-marked line) and measured
(solid line) results of the direct and coupled insertion losses of the branched
test network. (a) amplitudes, and (b) phases.

comparison is made in terms of both the direct and the coupled
amplitude and phase of the CTF. The results are in excellent
agreement especially for the direct CTF. In particular, the
phase is perfectly matching. The relatively small discrepancy
in the amplitude (always below 3 dB) is due to the non
idealities that are neglected by the simulations.

In Fig. 6, we show the results for the branched test network.
Again, the results are in good agreement both for the direct
and the coupled channels, which proves the validity of the
proposed simulation method.

C. P.u.l. Parameters for the Ribbon Cable and Experimental
Validation

The definition of the reference conductor in the ribbon
cables is important in order to determine the p.u.l. parameters.
In particular, referring to the notation of Fig. 4(b), if the
wire labelled with2 is the reference conductor, then we can
compute the p.u.l. inductances as [14]

lg(2) = lr(2) =
µ0

π
log

(

d

rw

)

, lm(2) =
µ0

2π
log

(

d

2rw

)

,

where in the notation we highlight the dependence of each
inductance on the reference conductor.

If the reference conductor is an external wire, namely1 or
3, the generator and receptor circuits are not equivalent. Thus,
we define the generator circuit between the two external wires,
and the receptor circuit consequently. The p.u.l. inductances
for this case read [11]

lg(1) = lg(3) = 2lm(1) = 2lm(3) =
µ0

π
log

(

2d

rw

)

,

lr(1) = lr(3) =
µ0

π
log

(

d

rw

)

.

Note that the p.u.l. inductances do not depend on the di-
electric permeability. Hence, they are not affected by insulation
inhomogeneities and the previous relations are valid in general.
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Fig. 7. Comparison between the simulated and measured results of the direct
and coupled insertion losses for the single section test network when a ribbon
cable is deployed. Results are obtained considering the central reference
conductor in (a)-(b), and an external reference conductor in (c)-(d).

Now, if we neglect the dielectric inhomogeneities, we can still
exploit (26)-(27) in order to obtain theC andG matrices.

In Fig. 7, we report the comparison between simulation
and experimental results for the single section test network
that uses the ribbon cable. The geometrical parameters of
the ribbon cable are reported in Table I. Further, for the
ribbon cable we have found an almost frequency independent
relative dielectric constant, i.e.,εr = 3.5. Both reference
conductor configurations are considered. Namely, the central
conductor case and an external conductor case are shown in
Fig. 7(a)-7(b) and Fig. 7(c)-7(d) respectively. We report only
the amplitude of the CTF. The solid curves are the measured
results, while the curves with circle markers are those obtained
via simulation under the assumption of a uniform dielectric.
Discrepancies are found both for the direct and the coupled
channels, i.e., the simulated insertion losses are not perfectly
consistent with the measures. This effect is more pronounced
when the reference is the central conductor rather than an
external one.

In Fig. 8, we show the same results for the branched test
network described in Section III. Also in this case discrepan-
cies are found.

In the next section, we further investigate the reasons of such
discrepancies, and we propose an improved cable model based
on a finer characterization of the dielectric inhomogeneities.

IV. M ODEL IMPROVEMENTS ANDVALIDATION

In the previous section, we have found close matching be-
tween the simulated and measured channel transfer functions
when the symmetric cable is deployed. Slight differences are
due to the presence of non idealities of a real-made circuit.
In fact, the theoretical model applies some approximations,
i.e., we model the line geometry as constant, we consider the
dielectric around conductors as uniform, we do not take into
account the fact that the hand-made wiring interconnections
are not ideal as those at the branch nodes and between the test
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Fig. 8. Comparison between the simulated and measured results of the direct
and coupled insertion losses for the branched test network when a ribbon cable
is deployed. Results are obtained considering the central reference conductor
in (a)-(b), and an external reference conductor in (c)-(d).

network and the measurement equipment ports. Nevertheless,
these approximations have yielded good matching of the
results when the symmetric cable is used. On the contrary,
with the ribbon cable the discrepancy is significant, as Fig.7
and Fig. 8 show, still considering an identical test network
topology. This suggests that the conventional ribbon cable
model does not represent with sufficient accuracy the reality.
Therefore, we have further refined the ribbon cable model as
follows.

From Fig. 4(b), we note that the conductors of a ribbon cable
are surrounded only by a thin insulation layer. Therefore, the
conventional assumption of a uniform dielectric may strongly
affect the mutual interactions between coupled channels. The
problem has been already pointed out in the literature, where
a refined characterization of the charge densities is proposed
in [12]. In detail, the charge over each conductor surface
is no longer determined by just the position of the other
wires. It is also affected by the presence of a bound charge
over the dielectric discontinuity surfaces. In particular, the
charge distribution over the conductors is the sum of the free
charge and the bound charge. The bound charge over the
conductor surface is equal in absolute value and opposite in
sign to the bound chargeqb over the dielectric surface, i.e.,
the discontinuity dielectric surface. According to [12], if we
accurately model the bound chargeqb, we are able to estimate
the free chargeqf on each conductor surface and consequently
we obtain an improved model for the capacitance matrixC.

To this end, we follow the approach proposed in [12].
The method describes the surface charge densities over the
discontinuity surfaces with a Fourier series expansion. Then,
two sets of boundary conditions are enforced. The first defines
the potential over each conductor as a function of the charge
densities. The second imposes the continuity conditions for
the normal components of the displacement vector just inside
and just outside the dielectric surfaces. The resultant system
of equations leads to an expression of the charge densities
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as a function of the conductor potentials, and thus to the
the free charge over the conductors. Finally, by defining the
conductor potentials as a function of the reference potential,
the p.u.l. capacitance matrixC is obtained. This is done
for both transmission configurations, i.e., when the reference
conductor is the wire2 or one of the external wires. Finally,
onceC is known, we apply (26)-(27) to derive the inductance
matrix L and the conductance matrixG.

We report numerical results in Fig. 7 and 8, where the
cross-marked curves represent the insertion loss computed
with the improved ribbon cable model. Now, a significant
better matching between simulated and measured results is
shown for both the single section and the branched test
network. For instance, in Fig. 7(b) (single section network)
and 8(d) (branched network), the simulated insertion loss for
the coupled channel is always within 4 dB from the measured
one, while the simulated results with the conventional cable
model are significantly discrepant.

V. CONCLUSIONS

We have presented an MTL theory based approach to
compute the MIMO channel transfer function of PLC networks
with multiple conductor cables. The method is based on
computing the MIMO CTF via a matrix voltage ratio approach
which is applicable to complex in-home networks that exhibit
several branches. We have addressed the analytical modelling
of cables with symmetric and ribbon geometries. Then, we
have validated the channel simulator. We have found that the
results from simulations are in good agreement with the exper-
imental ones. This shows that the simulator is an appropriate
tool for the generation of MIMO PLC channel responses to
be used in the design and testing of PLC modems that exploit
MIMO signal processing. In order to better the results when
ribbon cables are deployed, we have also proposed to improve
the cable model by considering the effects of a non uniform
dielectric insulation.
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