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1. Introduction1

This document presents the TDMA Half-Rate codec proposal by emphasizing the differences from2

TIA/EIA 136-410 speech coder, [1].  The channel encoding/decoding procedures required for the TDMA3

half-rate codec are also specified.4
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2. General description of the Speech Codec1

2

2.1. Principles of the ACELP Encoder3

The codec frame and subframe structure is the same as that in the TIA/EIA 136-410 speech coder, each4

frame of duration 20 ms and 4 subframes per frame however with 0.75 ms lookahead.  The LP analysis is5

performed once per frame.  The set of LP parameters are quantized in line spectrum pair (LSP) domain6

using a multi-stage vector quantization.  An open-loop pitch lag is estimated twice per frame as in7

TIA/EIA 136-410.8

Then the following operations are repeated for each subframe:9

• The target signal x(n) is computed in the same way as in TIA/EIA 136-410.10

• The impulse response, h(n) is computed.11

• Closed-loop pitch analysis is performed with a 1/3-resolution fractional pitch search in the same way12

as in TIA/EIA 136-410.  The full lag is encoded in the first and third subframes and relatively13

encoded in the second and fourth subframes.14

• The target signal x(n) is updated by removing the adaptive codebook contribution. An algebraic15

codebook (ACELP) is used for the innovative excitation.16

• The gains of the adaptive and fixed codebook are vector quantized.17

• Finally, the filter memories updated.18

The bit allocation of the codec is shown in Table 2.1-1.  For each 20 ms speech frame, 124 bits are19

produced, corresponding to a fixed coding rate of 6.2 kbps.20

Table 2.1-1: Bit allocation of the 6.2 kbps coding algorithm.21

Detailed bit allocation table t.b.a.
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1

2.2. Principles of the ACELP Decoder2

The signal flow of the decoder is Same as that in TIA/EIA 136-410.3

2.2.1. Audio Interface4

Same as that in TIA/EIA 136-410.5
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3. Speech Encoding1

In this section the blocks of the speech encoder are described.2

3.1. Pre-processing3

Pre-processing and high-pass filtering are identical to that in TIA/EIA 136-410.4

The high-pass filtered output is sent to the noise-suppression and linear prediction analysis functions.5

3.2. Linear Prediction Analysis and Quantization6

Linear prediction (LP) analysis is performed on the input data using an autocorrelation approach with an7

asymmetric window.8

The autocorrelation coefficients produced from the original input data are sent to the noise-suppression9

voice-activity detector.  The output data from the noise-suppression function is reanalyzed by the10

autocorrelation function then processed as described below.11

The LP parameters are computed by Levinson algorithm and transformed to LSP domain for quantization12

and interpolation purposes.13

3.2.1. Levinson-Durbin Algorithm14

Same as that in TIA/EIA 136-410.15

3.2.2. LP to LSP Conversion16

Same as that in TIA/EIA 136-410.17

3.2.3. LSP to LP Conversion18

Same as that in TIA/EIA 136-410.19

3.2.4. Quantization of LSPs20

The LSP vector is quantized with a 4th order MA predictive multi-stage vector quantizer (MSVQ).21

3.2.5. Interpolation of the LSPs22

The LP parameters for each subframe are computed using a linear interpolation of the parameters with the23

previous frame.  The interpolation coefficients accommodate the 0.75 ms lookahead.24
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3.3. Open-loop Pitch Analysis1

Same as that in TIA/EIA 136-410.2

3.4. Impulse Response Computation3

Same as that in TIA/EIA 136-410.4

3.5. Target Signal Computation5

Same as that in TIA/EIA 136-410.6

3.6. Adaptive Codebook Search7

Same as that in TIA/EIA 136-410.8

3.7. Algebraic Codebook Structure9

The codebook structure is based on interleaved single-pulse permutation design similar but with fewer10

pulses as TIA/EIA 136-410.11

3.8. Quantization of the Gains12

The fixed codebook gain quantization is performed using a 4th order MA prediction with fixed13

coefficients.  However adaptive codebook gain is also jointly quantized with fixed codebook gain.14

3.9. Memory Update15

Same as that in TIA/EIA 136-410.16
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4. Speech Decoding1

In this section the blocks of the speech decoder are described.2

4.1. Decoding and Speech Synthesis3

The decoding is performed in the following order:4

Decoding of the LP parameters: Quantized LSP vector recovered and the LP parameter interpolation are5

performed for each subframe.6

Then for each subframe:7

• Decoding of the adaptive codebook vector: The integer and fractional pitch lag components are8

recovered based on received index and the adaptive codebook vector is generated as in TIA/EIA 136-9

410.10

• Decoding of the innovative codebook: The corresponding pulse structure is generated from the11

received indices. The pitch sharpening procedure is applied if pitch lag is less than subframe size 4012

as in TIA/EIA 136-410.13

• Decoding of the adaptive and fixed codebook gains: The gains are recovered from the received14

index.15

• Computing the reconstructed speech: Same as that in TIA/EIA 136-410.16

4.2. Post-processing17

18

4.2.1. Algebraic-codebook Post-processing19

An additional post-processing filter is applied in order to reduce the perceptually adverse effects of the20

sparse excitation [3].  The filter alters the innovation signal to create a new innovation which has the21

energy spread over the subframe.  The filter alters mainly the phase of the innovation through a “semi-22

random” impulse response.  The filtering is performed by circular convolution, using one of three stored23

impulse responses each with a different amount of spreading.  The filter selection is controlled by a24

voicing decision, based on the filtered received pitch gain.  A strong increase in fixed-codebook gain is25

also detected to avoid spreading of onsets.26

4.2.2. Adaptive Post-filtering27

The adaptive post-filter structure is identical to that used in TIA/EIA 136-410.  A special filter has been28

added to perceptually enhance the coded residual noise and is described in the Noise Suppression section29

below.30
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4.2.3. High-pass Filtering and Up-scaling1

Same as that in TIA/EIA 136-410.2
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5. Noise Suppression1

On calls, that are determined to contain a background noise level such that the voice quality at the2

receiving end is degraded, a noise suppression algorithm is applied on the uplink to reduce the noise level.3

This reduces the annoying effect of the noise on the listener and prevents the speech encoder from being4

degraded in its ability to determine parameters as accurately as for clean speech. The algorithm consists of5

two components.  The first component is integrated with the speech encoder and performs the bulk of the6

noise suppression.  The second component is integrated with the speech decoder and is used as a noise7

post-filter for further perceptual enhancement of the residual noise.8

5.1. Noise Suppression in the Speech Encoder9

The encoder noise suppressor receives input data immediately after the speech encoder pre-processor10

high-pass filtering.  The voice-activity detector relies on parameters computed by the speech encoder11

functions.  The output from noise suppression is sent to the LP analysis function.12

Figure 5.1-1: Noise-suppression in the Speech Encoder.13

The processing blocks of noise-suppression in the speech encoder are described below.14
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5.1.1. Tone Detector1

The tone detector is the same as used for TIA/EIA 136-410, Annex D to detect information tones.  The2

output indicates the presence of information tones and thereby prevents the VAD from updating the noise3

threshold.4

5.1.2. Encoder Voice Activity Detector5

The Voice Activity Detector (VAD) is based on the VAD from the TIA/EIA 136-410, Annex D.  The6

VAD is used to identify noise only frames.7

5.1.3. Noise Suppression Filter8

The noise suppression filter uses the VAD input to collect characteristics of the noise-only portion of the9

incoming signal such as level, spectral shape, duration, etc.  This information is used to model the noise10

background and to construct an inverse filter which applied to both noise-only and speech + noise regions11

to suppress the contribution of the noise.  Details of the noise suppression filter are t.b.a.12

5.1.4. Noise Suppression Control13

Noise suppression should only be applied to frames for which there will be noticeable improvement in the14

speech quality.  Therefore it is desirable to turn off the algorithm when either the noise level is too low for15

the listener to discern any improvement, or the noise level is so high such that the SNR makes the16

algorithm fail to improve the call quality.  It is also desirable to turn off the noise suppression when music17

is present.  A music detector is used to prevent the noise filter from corrupting music such as from a call18

being put “on hold”.19

5.2. Noise Suppression in the Speech Decoder20

21

5.2.1. Decoder Voice Activity Detector22

Before calling the post processing function, the decoder calls the Decoder VAD function.  This is similar23

to the encoder VAD except it is computationally simpler since it operates on frame energy rather than24

filtered energy.25

5.2.2. Pitch Sharpening for Noise26

For frames classified as noise by the decoder VAD, pitch sharpening in the decoder is bypassed.27
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5.2.3. Perceptual Enhancement of Coded Noise1

When the decoder VAD indicates a frame as noise-only, a special filter is applied to perceptually enhance2

the coded residual noise.3



UWCC.GTF.HRP.99.05.26._

11

6. TTY/TDD Processing1

Baudot tones are processed by detecting the characters being transmitted from the TTY/TDD device into2

the encoder and conveying the character information rather than the tones to the decoder.  Because one3

Baudot character spans a minimum of 8 speech processing frames, the information for each character4

being transmitted is sent 8 times to the decoder.  This redundancy allows the decoder to correctly5

regenerate the character despite frame errors (FERs) and random bit errors in the speech packet.6

The TTY characters are encoded into the speech packet in a robust way to allow reliable detection in the7

decoder.  When Baudot tones are not present, the vocoder processes signals through the speech encoder8

and decoder.9

Figure 6-1: TTY/TDD encoder/decoder.10
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6.1. TTY/TDD  Encoder12

The TTY/TDD processing in the encoder has a detector, which is constantly checking the input PCM13

stream for the presence of Baudot tones.  Each frame is classified as being non-TTY (NON_TTY), TTY14

character, or silence in-between TTY characters (TTY_SILENCE).  If no tones are detected, the frame is15

labeled as NON_TTY and passed to the speech encoder.  If Baudot tones are detected, the TTY/TDD16

encoder builds a TTY/TDD frame (shown in Table 6.1-1).17

When Baudot tones are initially detected, the encoder builds a TTY_SILENCE frame constructed from a18

5-bit TTY_SILENCE code and a 2-bit TTY_SILENCE header.  This frame is transmitted while19

attempting to detect the incoming character.20

When a character is detected, the encoder builds a TTY character frame constructed from the 5-bit21

character code along with a 2-bit sequence header.  The header consists of a sequential counter and allows22

the decoder to better distinguish between consecutive transmissions of the same character.23
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Table 6.1-1: Bit allocation of the 6.2 kbps TTY/TDD frame.1

Mode Parameter Total per frame

Reserved 2

TTY/TDD header 2

TTY/TDD character 5

TTY/TDD header repeated 2

TTY/TDD TTY/TDD character repeated 5

TTY/TDD header repeated 2

TTY/TDD character repeated 5

Zeros 32

Unused 69

Total 124

For each character the encoder detects, the same TTY/TDD frame is transmitted 8 consecutive times.2

When silence is detected in-between characters, the encoder sends the frame for TTY_SILENCE.3

When speech returns it is passed to the speech encoder.  No special message is sent to indicate that speech4

is being processed the decoder knows to stop regenerating Baudot tones when the TTY/TDD frame is not5

detected.6

6.2. TTY/TDD Decoder7

The TTY/TDD decoder detector monitors each incoming frame, looking for the unique TTY/TDD frame8

format.  Each frame is classified as in the encoder along with one new type – a frame erasure (BFI).  If a9

frame is classified as a TTY character, the character is identified by its header and character information.10

The decoder maintains a TTY/TDD history buffer that stores these classifications for 11 frames; there are11

9 frames of lookahead, 1 current frame, and 1 frame of lookback (Figure 6.2-1).  This buffer is initialized12

to be NON_TTY and is updated every frame.  As long as the current frame is NON_TTY, it is passed13

directly to the speech decoder.14

Figure 6.2-1: TTY/TDD receiver buffer structure.15

lookback current lookahead 1 lookahead 2 … lookahead 9
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When the TTY tones first arrive, the current frame will transition from NON_TTY to TTY_SILENCE to1

signal the decoder that TTY characters are coming.  At this point, the decoder checks its lookahead buffer2

to make sure this is not an erroneous message.  At this point, the decoder will expect either TTY3

characters or TTY_SILENCE messages.  If TTY_SILENCE reaches the current frame, the decoder mutes4

its output.  When the information for a character reaches the current frame for the first time, it checks its5

lookahead to make sure that the next 7 frames of lookahead also contain the same information since the6

encoder should have sent the same character information for 8 consecutive frames.  If there is a7

discrepancy, or if there are frame erasures, a vote is taken to see which character was most likely to have8

been sent.  If a character is determined to be present, its Baudot tones are regenerated and written to the9

vocoder output buffer.10

False alarms are avoided by forcing the TTY decoder to vote on the current frame every time there is a11

transition from NON_TTY to anything else.  This voting process is also used to protect the TTY12

processing from random bit errors that may have been injected by the wireless channel.13
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7. Channel Encoding1

The channel encoding process is different for the base-to-mobile and the mobile-to-base transmissions,2

due to their asymmetric transmission capacities.3

[Editors Note: Channel coding techniques for the half-rate codec are non-adaptive and are based on4

fixed coding/interleaving schemes and modulation.]5

7.1. Speech Data Classes6

The speech codec produces 124-output bits.  For channel encoding, these data bits are divided into sub-7

classes according to the perceptual significance of each bit.  Channel coding utilizes these sub-classes to8

provide a level of error protection for each class, which is commensurate with its perceptual significance.9

Table 7.1-1 defines the speech classes for the half-rate speech codec.10

Table 7.1-1: Speech Data Classes11

Speech
Class

Number of Bits Description

Class 1A 63 The perceptually critical Class 1 bits.  These bits are protected by a
cyclic redundancy check (CRC).  If the CRC fails upon reception,
the Class 1A frame, as well as the Class 1B bits, are discarded. The
frame is then reconstructed based on past data.

Class 1B 11 These bits are perceptually important but are not included in the
CRC computation. Therefore erroneous bits in this class do not
cause a frame error.  However, these bits are not used for decoding
should a frame error occur.

Class 2 50 The least perceptually significant bits. Some of the Class 2 bits are
perceptually more important as an error in one of these bits may
affect the performance of several other Class 2 bits.

7.2. Ordering of the Speech Encoder Bit Stream12

The 124 speech bits, described in Table 7.1-1, are provided to the channel encoder in descending order of13

perceptual importance.  The speech bits at the input to the channel encoder are labeled as S(0)-S(123).14

Class 1A bits are labeled as S(0)-S(62), Class 1B bits are labeled as S(63)-S(73), and the remaining bits,15

S(74)-S(123), are Class 2 bits. Table 7.2-1 describes the bit order in which the channel encoder receives16

data from the speech encoder.17
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Table 7.2-1: Ordering of the speech encoder bit stream1

Detailed speech bit order t.b.a

7.3. Channel Encoding for Base-to-Mobile Transmission2

The channel encoding for TDMA half-rate, base-to-mobile transmission, is based on two users co-sharing3

commonly assigned time-slots, [4].4

Figure 7.3-1: Channel encoding for base-to-mobile transmission5

6

Figure 7.3-1 illustrates the channel encoding used for base-to-mobile transmission.  In this case, two users7

shall be assigned common time-slots for transmission within each TDMA frame.  Each user’s data must8

be encoded separately but the channel encoding procedures applied must be identical for both users.  If9

data is to be encrypted prior to transmission then the encryption mask must be applied before interleaving10

the data.11

Speech
Encoder

6.2
 kbps

Convolutional
Encoder 2

C2

K=7

Convolutional
Encoder 1

C1

K=7

CRC

S(0)-S(123)

S(0)-S(62) 
( 63 Class 1A)

S(63)-S(73)
(11 Class 1B)

S(74)-S(123) 
(50 Class 2)

C(0)-C(6) 
( 7 CRC) 

Reorder

R1

Reorder
R2

T(0)-T(5)
(6 Tail Bits) 

User2 processing 

E
n
c
r
y
p
t

User1 processing 

T
h
r
e
e
-
S
l
o
t
-
I
n
t
e
r
l
e
a
v
e

I1(0)-I1(80)

I2(0)-I2(49)

Puncture
P1

Puncture
P2

U(0)-U(121)

U(122)-U(198)

E(0)-E(198)

E(0)-E(198)

M
a
p
p
e
r

O(0)-O(397), 
O(398) = 0

OR(0)-OR(398)



Lucent's Half Rate Proposal

16

The following discussion applies to both users’ channel encoding procedures.  A 7 bit cyclic redundancy1

check (CRC) is computed over the 63 Class 1A bits to produce the CRC bits C(0)-C(6).  The Class 1A,2

Class 1B and the CRC bits are combined and convolutionally encoded together as part of a single data3

frame. Prior to encoding the bits are reordered according to R1.  The input to the convolutional encoder,4

C1, comprises 81 bits labeled as I1(0)-I1(80).  Note that a tail-biting code is used for C1 and no tail bits5

are transmitted. The encoder C1 is a rate ½ , constraint length 7 (memory-order 6) code, which is6

punctured according to P1 to produce 122 output data bits, U(0)-U(121).7

The 50 Class 2 bits form a separate frame and are encoded using the convolutional encoder C2, which is8

also a rate ½ , constraint length 7 encoder. The bits are reordered, according to R2, prior to the encoding9

operation. The resulting reordered bits, I2(0)-I2(49), are combined with 6 tail bits, T(0)-T(5), to force the10

encoder to end in a known state. The output of C2 is punctured according to P2 to provide 77 output bits,11

numbered U(122)-U(198), for a total of 199 encoded bits.12

At this stage it is possible to apply a voice privacy mask to each user’s encoded data.  The encrypted (or13

clear) data stream of both users’ is then combined in a single stream.  Bits E(0)-E(198) of the first user are14

labeled O(0)-O(198).  Bits E(0)-E(198) of the second user are labeled O(199)-O(397).  Bit O(398) is set to15

zero to produce a total output of 399 bits.16

The combined output stream, O(0)-O(398), is interleaved over three slots.17

The TDMA half-rate solution for the base-to-mobile direction, works in conjunction with 8-PSK18

modulation and the 8-PSK slot format defined for the base-to-mobile link in TIA/EIA 136-131, [2].19

Therefore the output of the interleaver, OR(0)-OR(398), is mapped into complex symbols using an 8-PSK20

mapper.  [Editor’s Note: This paragraph is informative and should not be included in the actual21

standard.]22

7.3.1. Cyclic Redundancy Check (CRC)23

A 7-bit CRC is computed for the 63 Class 1A bits in the frame.  The CRC parity bits are calculated24

according to the following CRC polynomial.25

75421)( XXXXXXg +++++= (7.3.1-1)

The input polynomial consists of Class 1A bits S(0)-S(62) and is defined as26

016162 )62()61()1()0()( XSXSXSXSXa ++++= K (7.3.1-2)

The CRC encoding and decoding procedure is based on TIA-136-410, [1].27

7.3.2. Pre-Encoder Bit Ordering28

The bit order presented to the convolutional encoders, C1 and C2, is described by the R1 and the R229

ordering arrays respectively.  The bits I1 and I2 are produced according to the following equations.30

80,,0)(1)(1 K== jjRjI (7.3.2-1)

31
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49,,0)(2)(2 K== jjRjI (7.3.2-2)

The following tables describe the R1 and the R2 arrays.  The index into the arrays increases row-wise.1

Index “0” is the first element of the first row, and the final index is the last element of the last row.2

Table 7.3.2-1: Bit Order for C1 described by R1 (base-to-mobile)3

C(0), C(1), C(2), S(0), S(2), S(4), S(6), S(8), S(10), S(12), S(14), S(16), S(18), S(20), S(22), S(24), S(26), S(28),
S(30), S(32), S(36), S(38), S(40), S(42), S(44), S(46), S(48), S(50), S(52), S(54), S(56), S(58), S(60), S(62), S(64),
S(66), S(68), S(70), S(72), S(73),S(71), S(69), S(67), S(65), S(63), S(61), S(59), S(57), S(55), S(53), S(51), S(49),
S(47), S(45), S(43), S(41), S(39), S(37), S(35), S(33), S(31), S(29), S(27), S(25), S(23), S(21), S(19), S(17), S(15),
S(13), S(11), S(9), S(7), S(5), S(3), S(1), C(3), C(4), C(5), C(6)

4

Table 7.3.2-2: Bit Order for C2 described by R2 (base-to-mobile)5

S(74),  S(76),  S(78), S(80), S(82), S(84), S(86), S(88), S(90), S(92), S(94), S(96), S(98), S(100), S(102), S(104),
S(106), S(108), S(110), S(112), S(114), S(116), S(118), S(120), S(122),S(123), S(121), S(119), S(117), S(115),
S(113), S(111), S(109), S(107), S(105), S(103), S(101), S(99), S(97), S(95), S(93), S(91), S(89), S(87), S(85),
S(83), S(81), S(79), S(77), S(75)

6

The tail bits T(0)-T(5) are set to zero and appended at the end of the stream I2, after the bit I2(49). T(0) is7

appended first and T(5) is appended last.8

7.3.3. Convolutional Encoding9

The encoder C1 encodes 81 input bits, labeled I1(0)-I1(80). The convolutional encoder is a rate ½ ,10

constraint length (K) 7 code. There are 64 states in this code and six memory elements. Table 7.3.3-111

shows all the states and their outputs to a given input.  The two generator polynomials for this rate ½  code12

may be represented in octal form as13

}0171,0133{)}(),({ 10 =DgDg (7.3.3-1)

This corresponds to the polynomial representation:14

6532
0 1)( DDDDDg ++++= (7.3.3-2)

15

632
1 1)( DDDDDg ++++= (7.3.3-3)

The output from the convolutional coder alternates between these two polynomials, starting with g0(D)16

providing the first output bit.  The puncture pattern P1 describes the exact output of the encoder.  After17

puncturing, C1 produces 122 output bits.  The tail-biting convolutional encoding process may be viewed18

in the following manner.  Initially the encoder’s memory elements are cleared and the last six input bits,19
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I1(75), I1(77),…,I1(80), are fed in to the encoder sequentially, starting with I1(75).  The input bits I1(0)-1

I1(80) are then read in starting at I1[0] and concluding with I1(80).  For each input bit, I1(i), two output2

bits are produced.  The puncture pattern P1 determines which output bits are included in the output stream3

U.  Initializing the state of the encoder with input bits I1(75)-I1(80) ensures that when the same data bits4

are presented as input to the encoder, after I1(0)-I1(74) have been presented, the final memory state of the5

encoder will be the same as the starting state.  The value of this initial and final state will depend on the6

values of bits I1(75)-I1(80) and hence will be unknown to the decoder.7

The convolutional encoder C2 is identical to C1 (rate ½ , K = 7) and is also described by the input-output8

relationship described in Table 7.3.3-1.  The puncture pattern P2 applied to the output of this encoder is9

different and 77 output bits are produced after puncturing.  The encoder C2 produces a data frame that is10

terminated with the help of tail-bits.  Initially the encoder’s memory elements are cleared, and the encoder11

starts in state zero.  The input bits I2(0)-I2(49) are read in, starting at I2(0) and concluding with bit I2(49).12

For each input bit, I2(i), two output bits are produced.  The puncture pattern P2 determines, which output13

bits are included in the output stream U.  The final 6 input bits presented to C2 are the 6 tail bits T(0)-14

T(5), which are set to zero.  This ensures that after bits {I2(0)-I2(49), T(0)-T(5)} are transmitted, the15

encoder will end in the all-zero state.16

Table 7.3.3-1: Input - Output Relationship of the Convolutional Encoder17

INPUT = 0 INPUT = 1 INPUT = 0 INPUT = 1
state g0 g1 g0 g1 state g0 g1 g0 g1

0 0 0 1 1 32 0 1 1 0
1 1 1 0 0 33 1 0 0 1
2 1 0 0 1 34 1 1 0 0

3 0 1 1 0 35 0 0 1 1

4 0 0 1 1 36 0 1 1 0
5 1 1 0 0 37 1 0 0 1
6 1 0 0 1 38 1 1 0 0
7 0 1 1 0 39 0 0 1 1
8 1 1 0 0 40 1 0 0 1
9 0 0 1 1 41 0 1 1 0

10 0 1 1 0 42 0 0 1 1
11 1 0 0 1 43 1 1 0 0
12 1 1 0 0 44 1 0 0 1
13 0 0 1 1 45 0 1 1 0
14 0 1 1 0 46 0 0 1 1
15 1 0 0 1 47 1 1 0 0
16 1 1 0 0 48 1 0 0 1
17 0 0 1 1 49 0 1 1 0
18 0 1 1 0 50 0 0 1 1
19 1 0 0 1 51 1 1 0 0
20 1 1 0 0 52 1 0 0 1
21 0 0 1 1 53 0 1 1 0
22 0 1 1 0 54 0 0 1 1
23 1 0 0 1 55 1 1 0 0
24 0 0 1 1 56 0 1 1 0
25 1 1 0 0 57 1 0 0 1
26 1 0 0 1 58 1 1 0 0
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27 0 1 1 0 59 0 0 1 1
28 0 0 1 1 60 0 1 1 0
29 1 1 0 0 61 1 0 0 1
30 1 0 0 1 62 1 1 0 0
31 0 1 1 0 63 0 0 1 1

7.3.4. Puncturing1

The puncture pattern applied to the outputs of the convolutional encoders, C1 and C2, is described by the2

puncturing arrays P1 and P2 respectively.  The patterns P1 and P2 are binary-valued arrays with sizes3

equaling the size of the output sequences produced by C1 and C2 respectively.  Therefore the array4

described by P1 has 162 elements and that by P2 has 112 elements.  A “0” at a particular index of the5

array implies that the corresponding output bit will not be transmitted.6

The following tables describe the arrays P1 and P2.  Index into the puncturing array increases row-wise.7

Index “0” is the first element of the first row, while the last index is the last element of the last row.8

Table 7.3.4-1: Puncture Pattern P1 for Encoder C1 (base-to-mobile)9

1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0,
1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0 1,1,1,0,1,1,1,0
1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0,
1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1

10

The puncturing specified by P1 requires that every fourth output bit of C1 is punctured, thereby achieving11

an effective rate of 2/3 for C1.12

Table 7.3.4-2: Puncture Pattern P2 for Encoder C2 (base-to-mobile)13

1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,0,1,0, 1,1,1,0,1,0,1,0,
1,1,1,0,1,0,1,0 1,1,1,0,1,0,1,0, 1,1,1,0,1,0,1,0, 1,1,1,0,1,0,1,0, 1,1,1,0,1,0,1,0, 1,1,1,0,1,1,1,0,
1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0,

14

C2 produces 77 output bits for 56 input bits.15

7.3.5. Interleaving16

17
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Figure 7.3.5-1: Three-slot interleaving for base-to-mobile transmission1
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Figure 7.3.5-1 serves an example to demonstrate the principles of three-slot-interleaving.  Here time-slots3

1 and 4 are assigned for transmission and two users are required to co-share the assigned time-slots.4

Alternative assignments using slots 2, 5 and 3,6 are also possible, [4].  The three-slot interleaving5

technique spreads the encoded data sequences of both the users over three consecutive time slots assigned.6

Each user produces an encoded data frame comprising 199 bits at 20-millisecond intervals.  In Figure7

7.3.5-1, it is assumed that the encoded data frames shown are ready for transmission; that is the initial 20-8

millisecond time-period required to buffer the speech data is not shown.  The combined encoded output of9

both users produced after a 20-millisecond period, is labeled O(0)-O(397).  An additional output bit,10

O(398) = 0, is added to match the slot capacity of 399 data bits.  The 399 data bits produced are divided11

into three segments to be transmitted over three consecutive slots.  The data to be transmitted in an12

assigned slot is reordered according to the interleaving array defined in Table 7.3.5-1.  Within a time slot13

only one third of the encoded data output produced by both users, which is available for transmission in14

the most recent speech frame, is transmitted.  This most recently encoded data is combined with one third15

of the encoded data available in the previous 20-millisecond-interval, and also with one third of the16

encoded data available 40 milliseconds prior to the most recent speech frame.17

The interleaving array determining the data to be transmitted in a given slot is defined in Table 7.3.5-1.18

The frame “x” refers to the most recent speech frame.  The frame “y” refers to the previous speech frame19

that starts 20 milliseconds prior to the most recent speech frame.  Finally the frame “z” refers to the20

speech frame that starts 40 milliseconds prior to the most recent speech frame.21

Table 7.3.5-1: Interleaving Table for base-to-mobile transmission22

Row
Number

Number
of
Elements

Frame  Output Bits

0 36 z O(0), O(12), O(129), O(199), O(211), O(328), O(24), O(36), O(141), O(223), O(235),  O(340),

O(48), O(60), O(153), O(247), O(259), O(352), O(72), O(84), O(165), O(271), O(283), O(364),

O(96), O(108), O(177), O(295), O(307), O(376), O(120), O(126), O(189), O(319), O(325), O(388)

1 36 y O(1), O(13), O(130), O(200), O(212), O(329), O(25), O(37), O(142), O(224), O(236), O(341),

O(49), O(61), O(154), O(248), O(260), O(353), O(73), O(85), O(166), O(272), O(284), O(365),

O(97), O(109), O(178), O(296), O(308), O(377), O(121), O(127), O(190), O(320), O(326), O(389),
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2 36 x O(2), O(14), O(131), O(201), O(213), O(330), O(26), O(38), O(143), O(225), O(237), O(342),

O(50), O(62), O(155), O(249), O(261), O(354), O(74), O(86), O(167), O(273), O(285), O(366),

O(98), O(110), O(179), O(297), O(309), O(378), O(122), O(128), O(191), O(321), O(327), O(390)

3 36 z O(3), O(15), O(132), O(202), O(214), O(331), O(27), O(39), O(144), O(226) , O(238), O(343),

O(51), O(63), O(156), O(250), O(262), O(355), O(75), O(87), O(168), O(274), O(286), O(367),

O(99), O(111), O(180), O(298), O(310), O(379), O(123), O(195), O(192), O(322), O(394), O(391),

4 36 y O(4), O(16), O(133), O(203), O(215), O(332), O(28), O(40), O(145), O(227), O(239), O(344),

O(52), O(64), O(157), O(251), O(263), O(356), O(76), O(88), O(169), O(275), O(287), O(368), O(100),

O(112), O(181), O(299), O(311), O(380), O(124), O(196), O(193), O(323), O(395), O(392),

5 36 x O(5), O(17), O(134), O(204), O(216), O(333), O(29), O(41), O(146), O(228), O(240), O(345),

O(53), O(65), O(158), O(252), O(264), O(357), O(77), O(89), O(170), O(276), O(288), O(369),

O(101), O(113), O(182), O(300), O(312), O(381), O(125), O(197), O(194), O(324), O(396), O(393),

6 30 z O(6), O(18), O(135), O(205), O(217), O(334), O(30), O(42), O(147), O(229), O(241), O(346),

O(54), O(66), O(159), O(253), O(265), O(358), O(78), O(90), O(171), O(277), O(289), O(370),

O(102), O(114), O(183), O(301), O(313), O(382),

7 30 y O(7), O(19), O(136), O(206), O(218), O(335), O(31), O(43), O(148), O(230), O(242), O(347),

O(55), O(67), O(160), O(254), O(266), O(359), O(79), O(91), O(172), O(278), O(290), O(371),

O(103), O(115), O(184), O(302), O(314), O(383),

8 30 x O(8), O(20), O(137), O(207), O(219), O(336), O(32), O(44), O(149), O(231), O(243), O(348),

O(56), O(68), O(161), O(255), O(267), O(360), O(80), O(92), O(173), O(279), O(291), O(372),

O(104), O(116), O(185), O(303), O(315), O(384),

9 30 z O(9), O(21), O(138), O(208), O(220), O(337), O(33), O(45), O(150), O(232), O(244), O(349),

O(57), O(69), O(162), O(256), O(268), O(361), O(81), O(93), O(174), O(280), O(292), O(373),

O(105), O(117), O(186), O(304), O(316), O(385),

10 30 y O(10), O(22), O(139), O(209), O(221), O(338), O(34), O(46), O(151), O(233), O(245), O(350),

 O(58), O(70), O(163), O(257), O(269), O(362), O(82), O(94), O(175), O(281), O(293), O(374),

O(106), O(118), O(187) ,O(305), O(317), O(386),

11 30 x O(11), O(23), O(140) , O(210), O(222), O(339), O(35), O(47) ,O(152), O(234) ,O(246), O(351),

O(59), O(71), O(164) ,O(258), O(270), O(363), O(83), O(95), O(176), O(282), O(294), O(375)

O(107), O(119), O(188), O(306), O(318), O(387),

12 3 x O(198), O(397), O(398)

1

The output data bits from the three frames x, y and z, (numbered O(0)-O(198) corresponding to the first2

user and O(199)-O(397) belonging to the second user), are placed into the interleaving array as shown in3

Table 7.3.5-1.  The data bits are then read row-wise.  Hence, the first 36 data bits to be transmitted will be4

the output bits described by the first row of the interleaving array (row number 0), starting from bits O(0)5

and ending with O(388) of speech frame ‘z”.  The next 36 data bits will be read from row number 1 until6

finally the bits in row number 12, O(198), O(397) and O(398), belonging to speech frame “x”, are7

transmitted.8

7.3.6. Symbol Mapping9

The required 8-PSK mapping is described in proposed changes to TIA/EIA 136-131, [4].10

[Editor’s Note: Section 7.3.6 is informative and should not be included in the actual standard.]11
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7.4. Channel Decoding for Base-to-Mobile Transmission1

In the channel decoder, the data is first deinterleaved to reconstruct the data frame.  This is carried out as2

an inverse process of the interleaving specified in Section 7.3.5.  If encryption was carried out prior to3

interleaving, the data must be decrypted at this stage.  Then the convolutionally encoded data must be4

decoded.  A number of techniques are applicable for decoding.  For instance, a Viterbi decoder exploiting5

soft-channel information may be used.6

The pre-ordering applied prior to the convolutional encoding must be reversed before the CRC is7

calculated from the decoded Class 1A bits.  The same CRC generator polynomial is used as described in8

Section 7.3.1.  The calculated CRC must be compared with the received CRC to check the validity of the9

Class 1A frame.  The result of this validity check must be provided to the speech decoder.10

7.5. Channel Encoding for Mobile-to-Base Transmission11

12

Figure 7.5-1: Channel encoding for mobile-to-base transmission13
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constraint length 7 code, which is punctured according to P1 to produce 136 output data bits, U(0)-1

U(135).2

The 50 Class 2 bits are left uncoded.  They are labeled U(136)-U(185) and a total of 186 encoded data bits3

are produced per speech frame.  If data must be encrypted prior to transmission, encryption must be done4

prior to interleaving.5

The encrypted (or clear) output bits O(0)-O(185) are combined with other encoded frames of the same6

user and interleaved over two slots.  The interleaving technique is based on combining two encoded data7

frames, produced within a 40-millisecond TDMA frame, and spreading it over two consecutive time slots8

assigned to each user.9

The TDMA half-rate solution for mobile-to-base-transmissions, works in conjunction with 8-PSK10

modulation and the 8-PSK-slot format defined for the mobile-to-base link in TIA/EIA 136-131, [2].11

Therefore the output of the interleaver, OR(0)-OR(371), is mapped into complex symbols using an 8-PSK12

mapper.  [Editor’s Note: This paragraph is informative and should not be included in the actual13

standard.]14

7.5.1. Cyclic Redundancy Check (CRC)15

An 8-bit CRC checksum is computed for the 63 Class 1A bits in the frame.  The CRC parity bits are16

calculated according to the following CRC polynomial.17

8764221)( XXXXXXXg ++++++= (7.5.1-1)

The input polynomial is based on S(0)-S(62) and is described in Section 7.3.1.18

The CRC encoding and decoding procedures are consistent with EIA/TIA-136-410, [1].19

7.5.2. Pre-Encoder Bit Ordering20

The bit order presented to the convolutional encoder C1 is described by the array R1.  The sequence I1 can21

be computed via the following equation.22

81,,0)(1)(1 K== jjRjI (7.5.2-1)

Table 7.5.2-1: Bit Order for C1 described by R1 (mobile-to-base)23

C(0), C(1), C(2), C(3), S(0), S(2), S(4), S(6), S(8), S(10), S(12), S(14), S(16), S(18), S(20), S(22), S(24), S(26),
S(28), S(30), S(32), S(36), S(38), S(40), S(42), S(44), S(46), S(48), S(50), S(52), S(54), S(56), S(58), S(60), S(62),
S(64), S(66), S(68), S(70), S(72), S(73),S(71), S(69), S(67), S(65), S(63), S(61), S(59), S(57), S(55), S(53), S(51),
S(49), S(47), S(45),S(43), S(41), S(39), S(37), S(35), S(33), S(31), S(29), S(27), S(25), S(23), S(21), S(19), S(17),
S(15), S(13), S(11), S(9), S(7), S(5), S(3), S(1),C(4), C(5), C(6), C(7)

24

Table 7.5.2-1 describes the R1 array.  The index into the array is assumed to increase row-wise.  Index25

“0” is the first element of the first row, and index  “81” is the last element of the last row.26
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7.5.3. Convolutional Encoding1

The convolutional encoder C1 is identical to that defined for the base-to-mobile case in Section 7.3.3.2

7.5.4. Puncturing3

The puncture pattern applied to the output of the convolutional encoder C1 is described by the array P1.4

P1 is a binary-valued sequence, with size equaling the size of the output sequence produced by C1.5

Therefore the sequence described by P1 has 164 elements.  A “0” at a particular location index implies6

that the corresponding output bit will not be transmitted.7

Table 7.5.4-1 describes P1.  Index into the puncturing array increases row-wise.  The index “0” is the first8

element of the first row, while the index 163 is the last element of the last row.9

Table 7.5.4-1: Puncture Pattern P1 for Encoder C1 (mobile-to-base)10

1,1,1,1,1,1,1,0, 1,1,1,1,1,1,1,0, 1,1,1,1,1,1,1,0, 1,1,1,1,1,1,1,0, 1,1,1,1,1,1,1,0, 1,1,1,1,1,1,1,0,
1,1,1,1,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0,
1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,0,1,1,1,0, 1,1,1,1,1,1,1,0, 1,1,1,1,1,1,1,0, 1,1,1,1,1,1,1,0,
1,1,1,1,1,1,1,0, 1,1,1,1,1,1,1,0, 1,1,1,1,

The pattern specified by P1 produces 136 output bits for 82 input bits.11

7.5.5. Interleaving12

13

Figure 7.5.5-1: Two –slot interleaving for mobile-to-base transmission14

15

Figure 7.5.5-1 illustrates an example two-slot interleaving scenario for mobile-to-base transmission.  Each16

time-slot carries half of four different encoded data frames of the assigned user, which are generated after17
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four 20-millisecond time-periods (two 40-millisecond TDMA time frames).  It is assumed that encoded1

data shown is ready for transmission in the next available time-slot; that is the speech buffering delay of2

20 milliseconds is not shown.3

The interleaving array determining the data to be transmitted in a given slot is defined in Table 7.5.5-1.4

Frame “w” refers to the most recent speech frame.  Frame “x” refers to the previous speech frame,5

produced 20 milliseconds prior to the most recent frame.  Finally, the frames “y” and “z” refer to the6

frames produced 40 and 60 milliseconds prior to the most recent frame, respectively.7

Table 7.5.5-1: Interleaving Table for mobile-to-base transmission8

Row

Number

Number

Of

 Elements

Frame

Number

 Output Bits

0 21 w O(0),O(13),O(8),O(33),O(53),O(28),O(73),O(93),O(48),O(113),O(129),O(68),

O(138),O(146),O(84),O(154),O(162),O(100),O(170),O(178),O(116),

1 21 x O(0),O(13),O(8),O(33),O(53),O(28),O(73),O(93),O(48),O(113),O(129),O(68),

O(138),O(146),O(84),O(154),O(162),O(100),O(170),O(178),O(116),

2 21 z O(121),O(134),O(76),O(142),O(150),O(92),O(158),O(166),O(108),O(174),O(182),O(124),

O(5),O(23),O(18),O(43),O(63),O(38),O(83),O(103),O(58),

3 21 y O(121),O(134),O(76),O(142),O(150),O(92),O(158),O(166),O(108),O(174),O(182),O(124),

O(5),O(23),O(18),O(43),O(63),O(38),O(83),O(103),O(58),

4 21 w O(1),O(15),O(10),O(35),O(55),O(30),O(75),O(95),O(50),O(115),O(131),O(70),

O(139),O(147),O(86),O(155),O(163),O(102),O(171),O(179),O(118),

5 21 x O(1),O(15),O(10),O(35),O(55),O(30),O(75),O(95),O(50),O(115),O(131),O(70),

O(139),O(147),O(86),O(155),O(163),O(102),O(171),O(179),O(118),

6 21 z O(123),O(135),O(78),O(143),O(151),O(94),O(159),O(167),O(110),O(175),O(183),O(126),

O(6),O(25),O(20),O(45),O(65),O(40),O(85),O(105),O(60),

7 21 y O(123),O(135),O(78),O(143),O(151),O(94),O(159),O(167),O(110),O(175),O(183),O(126),

O(6),O(25),O(20),O(45),O(65),O(40),O(85),O(105),O(60),

8 21 w O(2),O(17),O(12),O(37),O(57),O(32),O(77),O(97),O(52),O(117),O(132),O(72),

O(140),O(148),O(88),O(156),O(164),O(104),O(172),O(180),O(120),

9 21 x O(2),O(17),O(12),O(37),O(57),O(32),O(77),O(97),O(52),O(117),O(132),O(72),

O(140),O(148),O(88),O(156),O(164),O(104),O(172),O(180),O(120),

10 21 z O(125),O(136),O(80),O(144),O(152),O(96),O(160),O(168),O(112),O(176),O(184),O(128),

O(7),O(27),O(22),O(47),O(67),O(42),O(87),O(107),O(62),

11 21 y O(125),O(136),O(80),O(144),O(152),O(96),O(160),O(168),O(112),O(176),O(184),O(128),

O(7),O(27),O(22),O(47),O(67),O(42),O(87),O(107),O(62),

12 21 w O(3),O(19),O(14),O(39),O(59),O(34),O(79),O(99),O(54),O(119),O(133),O(74)

,O(141),O(149),O(90),O(157),O(165),O(106),O(173),O(181),O(122),

13 21 x O(3),O(19),O(14),O(39),O(59),O(34),O(79),O(99),O(54),O(119),O(133),O(74)

,O(141),O(149),O(90),O(157),O(165),O(106),O(173),O(181),O(122),

14 21 z O(127),O(137),O(82),O(145),O(153),O(98),O(161),O(169),O(114),O(177),O(185),O(130),

O(9),O(29),O(24),O(49),O(69),O(44),O(89),O(109),O(64),

15 21 y O(127),O(137),O(82),O(145),O(153),O(98),O(161),O(169),O(114),O(177),O(185),O(130),

O(9),O(29),O(24),O(49),O(69),O(44),O(89),O(109),O(64),
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16 9 w O(4),O(21),O(16),O(41),O(61),O(36),O(81),O(101),O(56),

17 9 x O(4),O(21),O(16),O(41),O(61),O(36),O(81),O(101),O(56),

18 9 z O(11),O(31),O(26),O(51),O(71),O(46),O(91),O(111),O(66),

20 9 y O(11),O(31),O(26),O(51),O(71),O(46),O(91),O(111),O(66),

The output data bits available within the four frames, w, x, y and z, (numbered O(0)-O(185) belonging to1

the assigned user are placed into the interleaving array  as shown.  The data bits are then read row-wise.2

The first 21 data bits to be transmitted are the bits in first row of the interleaving array (row number 0);3

starting with bit O(0) and ending with bit O(116) of the frame “w”.  The next 21 data bits are read from4

row number 1 until finally the bits in row number 20, O(91), O(111) and O(66), of the frame “y” are5

transmitted.6

7.5.6. Symbol Mapping7

8-PSK symbol mapping as described in Section 7.3.6 is used.8

[Editor’s Note: Section 7.5.6 is informative and should not be included in the actual standard.]9

7.6. Channel Decoding for Mobile-to-Base Link10

In the channel decoder, the data is first deinterleaved to reconstruct the data frame.  This is carried out as11

an inverse process of the interleaving specified in Section 7.5.5.  If encryption was carried out prior to12

interleaving, the data must be decrypted at this stage.  Then the convolutionally encoded portion of the13

data must be decoded.  A number of techniques are applicable for decoding.  For instance, a Viterbi14

decoder exploiting soft-channel information may be used.15

The pre-ordering applied prior to the convolutional encoding must be reversed before the CRC is16

calculated from the decoded Class 1A bits.  The same CRC generator polynomial is used as described in17

Section 7.5.1.  The calculated CRC must be compared with the received CRC to check the validity of the18

Class 1A frame.  The result of this validity check must be provided to the speech decoder.19
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