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Analytical Results about the Robustness of FMT
Modulation with Several Prototype Pulses in
Time-Frequency Selective Fading Channels
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Abstract— In this paper we study the performance of Filtered
Multitone (FMT) modulation systems in time-frequency selective
fading channels. FMT generalizes the OFDM scheme through the
deployment of a sub-channel shaping pulse. A general analysis
framework is reported, and it is specialized to the case of using
a sinc pulse, a root-raised cosine pulse, and Gaussian pulse.
Quasi-closed form expressions for the signal-to-interference (SIR)
power ratio are derived. The results allow to benchmark the
multitone system and understand how robust it is to frequency
selective time-variant fading. We make a comparison with OFDM
both in terms of SIR and bit-error-rate when single-tap sub-
channel equalization is used. It shows that FMT can have better
performance than OFDM due to the better sub-channel spectral
containment. We also discuss the usefulness of the SIR results
on the design of the prototype pulse in a time-frequency selective
fading channel.

Index Terms— DMT modulation, FMT modulation, fast fading,
frequency selective fading, OFDM.

I. INTRODUCTION

THE OBJECTIVE of this paper is the analysis of the
performance of Filtered Multitone (FMT) modulation in

time-variant frequency selective fading channels. FMT is a
discrete-time implementation of multicarrier modulation that
uses uniformly spaced sub-carriers and identical sub-channel
pulses [1]-[2]. Orthogonal Frequency Division Multiplexing
(OFDM) (also referred to as Discrete Multitone Modulation
(DMT)) can be viewed as an FMT scheme that deploys
rectangular time domain filters [3]. FMT has been originally
proposed for application in broadband wireline channels [1],
and subsequently it has been investigated for application in
wireless channels [4]. A design approach is to use frequency
confined pulses to get sub-channel orthogonality, and sub-
channel equalization to cope with the inter-symbol interference
(ISI) introduced by the channel.

The main research problems related to FMT are the efficient
digital implementation, the design of the prototype pulse,
the development of equalization schemes, and in general the
performance analysis. A popular efficient polyphase filterbank
architecture has been proposed by Cherubini et al. in [1]-
[2]. The channel time-frequency selectivity may introduce
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inter-carrier interference (ICI) and ISI that can be minimized
with the design of optimal time-frequency confined pulses.
The pulse design problem in analog multicarrier systems has
been treated by several authors [5]-[10]. Recently, simple
pulse design criteria for FMT in frequency selective fading
have been reported in [11]. Simplified sub-channel equal-
izers have been devised in [4], while optimal and iterative
multi-channel equalizers have been proposed in [12]-[13].
Although multitone systems are robust to channel frequency
selectivity, they are sensitive to carrier frequency offsets and
phase noise, as well as to fast time variations of the channel
impulse response [14]-[16]. An extensive literature exists on
the performance analysis of multicarrier systems in time-
variant frequency selective fading channels. However, this
work does not consider the FMT scheme, rather it focuses
on the specific OFDM solution where fast fading introduces
ICI [17]-[24], while dispersive fading introduces both ICI and
ISI when the cyclic prefix is shorter than the channel duration
[16], [20].

In [25] we have studied the performance limits of FMT
modulation, and we have shown that FMT provides both fre-
quency and time diversity gains when optimal multi-channel
equalization is used. However, if complexity is an issue, linear
single channel equalizers are used. In this case the ICI can
limit the performance.

Recently, Wang et al. have carried out a performance com-
parison between FMT and OFDM in time-variant frequency
selective fading channels [26]. In [26] the results are obtained
via numerical integration and are focused on an FMT system
that uses a root-raised cosine pulse. In our paper, we provide
a more general framework to the analysis of the SIR power
ratio in FMT systems over time-variant frequency selective
fading channels. The results are specialized when using sinc
pulses (ideal FMT), Gaussian pulses, and root-raised cosine
pulses. Closed (or quasi-closed) form expressions are found.
The analysis methodology is extended to the OFDM solution,
which allows to make a comparison between FMT and OFDM.
It has both a theoretical and practical relevance since it
allows to predict the bit-error-rate (BER) performance of
FMT with known, and widely used, pulses when simple one
tap equalization is implemented without resorting to time
consuming Monte Carlo simulations. The analysis of the ISI
and ICI power as a function of the system parameters gives
guidelines on the design of the prototype pulse, and allows
to understand whether more complex equalization, e.g., sub-
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Fig. 1. FMT transmission system.

channel equalization, is required to yield low BER. To this
respect, the best attainable performance is lower limited by
the matched filter bound [25]. The analytical results of this
paper yield, instead, an upper bound to the BER performance.
Finally, as a by-product of the analysis, we obtain fast con-
verging solutions to several definite integrals using expansions
in series of functions.

This paper is organized as follows. In Section II, the system
model is described. In Section III, we evaluate the output
of the receiver filter bank when transmission is over a time-
variant frequency selective channel. In Section IV, the average
power of the signal and interference components is derived and
specialized for several pulses. We discuss the results and we
report a comparison with OFDM in Section V with reference
to the SIR performance, and in Section VI with reference to
the BER. Guidelines about the design of the prototype pulse
are also discussed.

II. FMT MODULATION SCHEME

An FMT modulation based architecture [2],[25] is depicted
in Fig. 1. The notation is summarized in Table I. The trans-
mitter (synthesis stage) generates the signal

x(iT ) =
M−1∑
k=0

∑
�∈Z

a(k)(�T0)g(iT − �T0)ej2πfkiT i ∈ Z, (1)

where a(k)(�T0) is the sequence of complex data symbols, e.g.,
M-QAM, that is transmitted on sub-channel k = 0, ...,M − 1
at rate 1/T0. Furthermore, T is the sampling period1, M is the
number of sub-channels, T0 = NT is the sub-channel symbol
period, with K = N/M being the over sampling factor. The
k-th sub-carrier has frequency fk = k/MT, and g(nT ) is the
prototype pulse. The transmission bandwidth is W = 1/T,
and R = M/T0 is the overall transmission rate in symbol/s.

The scheme is referred to as non-critically sampled FMT if
the sub-carrier spacing 1/MT is larger than 1/T0. It is referred
to as critically sampled FMT when T0 = MT . A frequency
guard equal to fG = 1/MT − (1 + α)/NT exists between
sub-channels if the prototype pulse has confined frequency
response with Nyquist band 1/T0, and roll-off α. The sub-
carrier spacing decreases when we increase M , and we fix the
transmission bandwidth. For a given band limited prototype
pulse with Nyquist band 1/T0, the sub-channel bandwidth
decreases by increasing N .

1T is assumed to be the time unit.

In this paper we specialize the performance analysis for the
prototype pulses reported in Table I, that have both a practical
and a theoretical relevance, i.e., the rectangular frequency
domain pulse (Ideal FMT), the Gaussian pulse [25], the root-
raised cosine (r.r.c.) pulse. We also use the rectangular pulse
g(nT ) = rect (nT/T0). In this case, (1) yields a cyclically
prefixed (CP) OFDM signal with a CP of duration μT =
T0−MT . While the prototype pulse is ideally band limited in
FMT, in OFDM the sub-channels overlap because they have a
sinc frequency response. Non-critically sampled FMT and CP-
OFDM have the same transmission rate if they use the same
number of tones and the same sub-channel symbol period T0.
In FMT some data rate penalty is due to the frequency guards
(using an over sampling factor N/M > 1), in OFDM it is due
to the CP.

A. Receiver Filter Bank

The signal (1) is digital-to-analog converted and transmitted
over the communication channel (after RF conversion). The
received lowpass signal is analog-to-digital converted to obtain
y(iT ), and then it is passed through an analysis filter bank
with prototype pulse h(nT )(Fig. 1). The sampled output, at
rate 1/T0, corresponding to sub-channel k is

z(k)(�T0) =
∑
i∈Z

y(iT )e−j2πfkiT h(�T0 − iT ). (2)

In FMT the analysis pulse is matched to the synthesis pulse,
i.e., h(nT ) = g∗(−nT ). In CP-OFDM the analysis pulse is
h(nT ) = rect (−nT/MT ) with MT ≤ T0 = (μ + M)T . The
use of this analysis pulse corresponds to discard the cyclic
prefix of duration μT = (N − M)T at the beginning of
the received block. Note that in CP-OFDM there is a sub-
channel SNR penalty equal to M/N compared to FMT due
to a receiver pulse that is not matched to the transmit pulse
[25].

III. RECEIVER FILTER BANK OUTPUT WITH

TIME-FREQUENCY SELECTIVE CHANNEL

We model the baseband channel with a discrete-time time-
variant filter gCH(nT ;mT ) that comprises the effect of the
DAC and ADC stages

gCH(nT ;mT ) =
∑
p∈P

αp(nT )δ(m − p), (3)

where δ(m) is the Kronecker delta. Assuming wide sense
stationary scattering, the time-variant tap amplitudes αp(nT ),



1636 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 5, MAY 2008

TABLE I

NOTATION AND PROTOTYPE PULSE DEFINITIONS

NOTATION

T sampling period

M number of sub-channels

T0 = NT sub-channel symbol period with K = N/M being the

over sampling factor

fk k-th sub-carrier

G(f) discrete-time Fourier transform of g(nT )

repF (X(f)) =
∑

n
X(f − nF ), periodic repetition with period F

rect(t) = 1 for 0 ≤ t < 1, and zero otherwise

sinc(t) = sin(πt)/(πt)

rrcos(t) = sinc(αt + 0.25) sin(π(t − 0.25))/(4t)

+ sinc(αt − 0.25) sin(π(t + 0.25))/(4t)

RRCOS(f) =

{
1 for 0 ≤ |f | < f1,

0 for |f | > f2,

cos(π(|f | − f1)/2α) for f1 ≤ |f | < f2,

with f1 = 0.5 × (1 − α), f2 = 0.5 × (1 + α)

rcos(t) = 0.25 × πsinc(t)(sinc(αt + 0.5) + sinc(αt − 0.5))

Struve H0(t) = 4
π

∑∞
k=0

J2k+1(t)

2k+1
,

functions H1(t) = 2
π
− 2

π
J0(t) + 4

π

∑∞
k=1

J2k(t)

4k2−1

PROTOTYPE PULSES

Rectangular frequency g(nT ) = sinc
(

nT
T0

)
domain with bandwidth G(f) = T0rep1/T {rect (fT0)}
1/T0 ≤ 1/MT

Root-raised cosine with g(nT ) = rrcos
(

nT
T0

)
roll-off factor α, and G(f) = T0rep1/T {RRCOS(fT0)}
bandwidth (1 + α)/T0

Gaussian with equivalent g(nT ) =
√

2σ
π

e
−
(

σnT
T0

)2
band B = f3dBT0 G(f) = 4

√
2π
σ2 rep1/T

{
T0e

−
(

fπT0
σ

)2}
,

with σ = Bπ
√

2
ln 2

Rectangular in g(nT ) = rect (nT/T0)

time domain G(f) = T0sinc (fT0)

p ∈ P ⊂ Z, can be modeled as stationary complex Gaussian
processes [18]. Further, with Clarke’s isotropic scattering
model [18], the tap amplitudes have zero mean, and correlation

rp,p′(nT ) = E [αp(mT )∗αp′(mT + nT )]
= Ωp,p′J0(2πfDnT ), (4)

where Ωp,p′ = E [αp(mT )∗αp′(mT )], while fD is the
maximum Doppler, and J0(t) denotes the zero order Bessel
function of the first kind [29]. Correlation among the T -spaced
channel taps can be introduced by the filters in the ADC
stage [17], [25]. The Delay-Doppler Spread Power Spectrum
is obtained by the Fourier transform of (4), and it is equal to

[18]

Rp,p′(f) = rep 1
T

{
R̂p,p′(f)

}
with R̂p,p′(f) =

⎧⎨
⎩

Ωp,p′

πfD

√
1 − (f/fD)2

|f | < fD,

0 otherwise.

(5)

It follows that the k-th sub-channel filter-bank output reads

z(k)(�T0) =
M−1∑
k̂=0

∞∑
m=−∞

a(k̂)(mT0)g
(k̂,k)
EQ (�T0;mT0)

+ η(k)(�T0), (6)

where η(k)(�T0) is the Gaussian noise contribution, while the
equivalent impulse response between the input sub-channel k̂,
and output sub-channel k is defined as

g
(k̂,k)
EQ (�T0;mT0) = ej2π(fk̂mT0−fk�T0)

∞∑
i=−∞

h(k)(�T0 − iT )

×
∑

p

αp(iT )g(k̂)(iT − pT − mT0). (7)

In (7) we use the frequency shifted transmit and receive pulses
that are defined respectively as

g(k)(nT ) = g(nT )ej2πfknT ,

h(k)(nT ) = h(nT )ej2πfknT . (8)

Therefore, the output in the absence of noise can be written
as

z(k)(�T0) = a(k)(�T0)g
(k,k)
EQ (�T0; �T0)

+
∞∑

m=−∞,m �=�

a(k)(mT0)g
(k,k)
EQ (�T0;mT0)

︸ ︷︷ ︸
ISI(k)(�T0)

+
∑
k̂ �=k

∞∑
m=−∞

a(k̂)(mT0)g
(k̂,k)
EQ (�T0;mT0)

︸ ︷︷ ︸
ICI(k)(�T0)

, (9)

where the first term represents the useful data contribution,
the second additive term is the ISI contribution, the third term
is the ICI contribution.

The objective of this paper is to determine the robustness
of the system to the channel time and frequency selectivity
as a function of the design parameters. To do so we evaluate
the power of the interference components, which allows also
to predict the BER performance as shown in Section VI. The
analysis is quite general, and it is specialized to the pulses
listed in Table I. In several cases, closed form expressions
are found. In other cases, we pay particular attention to
numerically compute definite integrals via series expansions
that exhibit fast convergence and numerical stability.

IV. ANALYTICAL EVALUATION OF THE ISI AND ICI
POWER

We note that the sub-channel sequence of samples at the
receiver output can be written as

z(k)(�T0) =
M−1∑
k̂=0

z(k̂,k)(�T0) + η(k)(�T0), (10)
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where

z(k̂,k)(�T0) =
∞∑

m=−∞
a(k̂)(mT0)g

(k̂,k)
EQ (�T0;mT0) (11)

is the contribution of the data stream transmitted on sub-
channel k̂ to the sub-channel analysis filter output of index k.
We assume the data symbols to be i.i.d. with zero mean, and
average power M

(k)
a = E

[|a(k)(mT0)|2
]
. Then, the average

power of (11) equals

M (k̂,k)
z = E[|z(k̂,k)(�T0)|2]

= M (k̂)
a

∑
m

E

[∣∣∣g(k̂,k)
EQ (�T0;mT0)

∣∣∣2] , (12)

where the second equality holds with independent zero mean
data symbols. The computation is independent of the time
instant �T0 because we are in stationary conditions, therefore
we set � = 0. We refer to (12) as the cross power since it is the
power of the interference on sub-channel k that is generated
by sub-channel k̂.

With the tapped delay line channel model, the cross power
is

M (k̂,k)
z = M (k̂)

a

∑
m

∑
p,p′

∑
i,i′

rp,p′(iT )

× g(k̂)(iT + i′T − pT − mT0)h(k)(−iT − i′T )

× g(k̂)∗(i′T − p′T − mT0)h(k)∗(−i′T ). (13)

It should be noted that if we fix k̂ = k in (13), and we isolate
the term that corresponds to m = 0, we obtain the average
sub-channel signal power S(k) = M

(k)
a E

[
|g(k,k)

EQ (0; 0)|2
]
.

The sum of all other terms yields the ISI power M
(k)
ISI =

E
[|ISI(k)(0)|2], while the total power of the ICI can be

obtained as M
(k̂)
ICI =

∑
k̂ �=k M

(k̂,k)
z .

To proceed, we define the following sub-channel product
function

gh(k̂,k)(iT ; sT ) = g(k̂)(iT − sT )h(k)(−iT ). (14)

Then, we can rewrite (13) as

M (k̂,k)
z =

M
(k̂)
a

T

∑
m

∑
p,p′

∑
i

rp,p′(iT )

× c
(k̂,k)
gh (iT ; pT + mT0, p

′T + mT0), (15)

where the deterministic autocorrelation of the sub-channel
product function (14) is defined as

c
(k̂,k)
gh (iT ; sT, s′T ) = T

∑
i′

gh(k̂,k)(iT + i′T ; sT )

× gh(k̂,k)∗(i′T ; s′T ). (16)

The expression (15) is quite general, but it can be detailed
for a certain choice of the sub-channel pulses. In certain
cases, depending on the prototype pulse and the channel, it
is convenient to calculate the cross power (15) partially in the

frequency domain using the formula

M (k̂,k)
z =

M
(k̂)
a

T

∑
m

∑
p,p′

∑
i

rp,p′(iT )

×
∫ 1

2T

− 1
2T

C
(k̂,k)
gh (f ; pT + mT0, p

′T + mT0)ej2πfiT df,

(17)

or wholly in the frequency domain with the following formula
that is obtained via the Parseval theorem

M (k̂,k)
z =

M
(k̂)
a

T 2

∑
m

∑
p,p′

∫ 1
2T

− 1
2T

Rp,p′(−f)

× C
(k̂,k)
gh (f ; pT + mT0, p

′T + mT0)df. (18)

In (17)-(18) we use the discrete-time Fourier transforms
C

(k̂,k)
gh (f ; sT, s′T ) = T

∑
n c

(k̂,k)
gh (nT ; sT, s′T )e−j2πfnT , and

Rp,p′(f) = T
∑

n rp,p′(nT )e−j2πfnT . The first transform can
be written as

C
(k̂,k)
gh (f ; sT, s′T ) = GH(k̂,k)(f ; sT )GH(k̂,k)∗(f ; s′T ),

(19)
where GH(k̂,k)(f ; sT ) is the discrete-time Fourier transform
of the product function (14), i.e.,

GH(k̂,k)(f ; sT ) = rep 1
T

[(
G(k̂)(f)e−j2πfsT

)
∗ H(k)(−f)

]
(20)

and G(k)(f), H(k)(f) are the Fourier transforms of the fre-
quency shifted pulses in (8). In the FMT scheme the receiver
filter-bank is matched to the transmitter filter-bank, therefore,
H(k)(f) = G(k)∗(f).

In the following we specialize the results when the pro-
totype pulse is sinc, Gaussian, and root-raised cosine (Table
I). Further, we consider the channel to exhibit uncorrelated
scattering so that the channel taps are statistically indepen-
dent with zero mean, and power Ωp = E[|αp(iT )|2]. This
assumption is accurate as the signal bandwidth gets wide.
It allows to simplify the analysis and acquire insights about
the system performance. Data symbols with equal power,
M

(k)
a = Ma, are also considered. With these assumptions the

signal-to-interference power ratio (SIR) is identical on all sub-
channels. When the channel taps are correlated the average
SIR may vary across sub-channels as, for instance, shown in
[25]. However, such a variation is small for typical wide band
channels.

A. FMT with Sinc Pulse

With rectangular frequency domain pulses, the cross power
equals (see the Appendix I)

M (k̂,k)
z =

MaT 4
0

T 2πfD

∑
m

∑
p

Ωp

∫ fD

−fD

(|f + fk − fk̂| − 1/T0)2√
1 − (f/fD)2

× sinc2

(
(|f + fk − fk̂| −

1
T0

)(pT + mT0)
)

df.

(21)
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It has been obtained starting from (18), and assuming station-
ary uncorrelated channel taps that exhibit a maximum Doppler
smaller than the sub-carrier spacing, i.e., fD ≤ 1/MT .

Now, the sub-channel signal power can be computed by
isolating the term in (21) of index m = 0, and setting k̂ = k.
This yields

S(k) =
2MaT 4

0

T 2πfD

∑
p

Ωp

∫ fD

0

(f − 1/T0)2√
1 − (f/fD)2

× sinc2

(
(f − 1

T0
)pT

)
df. (22)

The power of the sub-channel ISI is obtained from (21) as

M
(k)
ISI =

2MaT 4
0

T 2πfD

∑
m �=0

∑
p

Ωp

∫ fD

0

(f − 1/T0)2√
1 − (f/fD)2

× sinc2

(
(f − 1

T0
)(pT + mT0)

)
df. (23)

Finally, the total power of the ICI experienced by a given
sub-channel is

M
(k)
ICI =

∑
k̂ �=k

M (k̂,k)
z

=
2MaT 4

0

T 2πfD

∑
m

∑
p

Ωp

∫ fD

fG

(f − fG)2√
1 − (f/fD)2

× sinc2 ((f − fG)(pT + mT0)) df. (24)

It should be observed that (24) is always zero for k̂ �= k
such that no ICI is present if fD ≤ fG = 1/MT − 1/T0,
i.e., we use a frequency guard between sub-channels larger
than the maximum Doppler. Otherwise, if fG < fD ≤ 1/MT
only two adjacent sub-channels can generate ICI. Clearly, fast
fading can introduce some ISI because it distorts the received
sub-channel pulse as we will discuss in more detail in the
following. Neither ISI nor ICI is present if the channel is flat
and static.

B. FMT with Gaussian Pulse

Considering a Gaussian pulse, we obtain that the cross-
channel power is (see the Appendix I)

M (k̂,k)
z =

MaT 2
0

T 2πfD

∑
m

∑
p

Ωpe
−
(

sT σ
T0

)2

×
∫ fD

−fD

1√
1 − (f/fD)2

e
−
(

πT0(f+fk−f
k̂
)

σ

)2

df,

(25)

where we assume that the pulse frequency response has
extension smaller than 1/T such that its unfolded spectrum
is limited in [−1/2T, 1/2T ).

Now, the signal power can be obtained from (25) by fixing
m = 0, and setting k̂ = k

S(k) =
2MaT 2

0

T 2πfD

∑
p

Ωpe
−
(

pT σ
T0

)2

×
∫ fD

0

1√
1 − (f/fD)2

e
−
(

πT0f

σ

)2
df. (26)

The power of the sub-channel ISI is obtained from (25) and
equals

M
(k)
ISI =

2MaT 2
0

T 2πfD

∑
m �=0

∑
p

Ωpe
−
(

(pT+mT0)σ

T0

)2

×
∫ fD

0

1√
1 − (f/fD)2

e
−
(

πT0f

σ

)2
df. (27)

The total power of the ICI is

M
(k)
ICI =

∑
k̂ �=k

M (k̂,k)
z =

MaT 2
0

T 2πfD

∑
m

∑
p

Ωpe
−
(

(pT+mT0)σ

T0

)2

×
∑
k̂ �=k

∫ fD

−fD

1√
1 − (f/fD)2

e
−
(

πT0(f+fk−f
k̂
)

σ

)2

df.

(28)

If we suppose that only two adjacent sub-channels can gener-
ate ICI, we can write (28) as follows

M
(k)
ICI =

2MaT 2
0

T 2πfD

∑
m

∑
p

Ωpe
−
(

(pT+mT0)σ

T0

)2

×
∫ fD

−fD

1√
1 − (f/fD)2

e
−
(

πT0(f+1/(MT ))
σ

)2
df.

(29)

We observe that with Gaussian pulses we always experience
some degree of ICI and ISI.

C. FMT with Root-Raised-Cosine Pulse

The computation of (18) requires some cumbersome algebra
if we consider root-raised cosine pulses. We report some
specific results in the Appendices I-III.

D. CP-OFDM Case

The general expression for the interference power in (15)
can be used also to evaluate the power of the interference
components in CP-OFDM. In CP-OFDM the sub-channel
transmit pulse is rectangular with duration T0 = NT , the
cyclic prefix has duration μ = N − M samples, and the
receiver pulse is rectangular with duration MT . Thus, from
(15), the power of the interference seen by sub-channel k reads

M (k̂,k)
z = Ma

∑
m

∑
p

M−1∑
i=0

M−1∑
i′=0

rαp
(iT − i′T )

× ej2π(fk̂−fk)(iT−i′T )

× rect

(
iT + mT0 + pT

T0

)
rect

(
i′T + mT0 + pT

T0

)
.

(30)

From (30) we can compute the power of the useful term, of
the sub-channel ISI, and of the ICI, as follows:

S(k) = Ma

∑
p

M−1∑
i=0

M−1∑
i′=0

rαp
(iT − i′T )

× rect

(
iT + pT

T0

)
rect

(
i′T + pT

T0

)
, (31)
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M
(k)
ISI = Ma

∑
m �=0

∑
p

M−1∑
i=0

M−1∑
i′=0

rαp
(iT − i′T )

× rect

(
iT + mT0 + pT

T0

)
rect

(
i′T + mT0 + pT

T0

)
,

(32)

M
(k)
ICI = M

(k)
TOT − S(k) − M

(k)
ISI , (33)

where the total power is

M
(k)
TOT = MMa

∑
m

∑
p

rαp
(0)

×
M−1∑
i′=0

rect2
(

i′T + mT0 + pT

T0

)
. (34)

The above formulas generalize known results [18]-[24] on
OFDM by taking into account both the presence of fast fading
and multipath fading with time dispersion larger than the
cyclic prefix.

V. SIR EVALUATION

The results in the previous section allow the evaluation of
the SIR power ratio on sub-channel k

SIR(k) =
S(k)

M
(k)
ISI + M

(k)
ICI

. (35)

To compute (35) we need to numerically solve some integrals,
e.g., the ones in (22)-(24), and in (26)-(29). This can be
done by deriving equivalences that are obtained via series
expansions [28]. To gain insight and distinguish between the
effect of the delay spread and the Doppler spread, we consider
first a multipath channel with quasi-static fading, and then a
time-variant flat fading channel. Finally, we discuss the effects
of a joint time and frequency selective fading channel. Quasi-
closed form expressions (and in some cases, closed form
expressions) for the SIR are derived in the Appendices II-III.
The multipath channel is assumed to have power delay profile
Ωp with NP independent taps having the Doppler spectrum
in (5). Further, we assume identical signal power on all sub-
channels. With these assumptions, the SIR is independent of
the sub-channel index.

A. Frequency Selective Static Fading Channel

Let us assume the channel to be quasi-static but frequency
selective. Then, it is possible to elaborate further (15), and
obtain simple expressions for the signal and interference power
in FMT. We report them in Appendix II. In Fig. 2.A, Fig. 2.B,
and Fig. 3.A we show the SIR as a function of the normalized
delay spread γ for the FMT system. We assume an exponential
delay profile Ωp ∝ e−pT/(γT ), and we truncate the channel at
-20 dB. The series in (44) and (48)-(49) of the Appendix have
fast convergence, so that they are computed for |m| < 100. In
the figures, we fix the transmission bandwidth 1/T , and the
number of sub-channels M = 32, while we increase the factor
N which implies that we compress the sub-channel bandwidth
or equivalently we increase the sub-channel symbol period. It
should be noted, that the delay spread is γT such that if the
transmission bandwidth is 1 MHz, it equals 8 μs for γ = 8.
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Fig. 2. SIR performance as a function of delay spread in frequency selective
fading. FMT with sinc and Gaussian prototype pulse.

The figures show that the FMT architecture is robust to
channel frequency selectivity. We can increase the sub-channel
separation at the expense of data rate if we choose larger
values of N . When the delay spread γ gets larger, the power
of the ISI increases, thus the SIR decreases. It can be counter-
acted by using a higher number of sub-carriers (thus obtaining
narrower sub-channels) or, if the SIR is particularly low, by
using a sub-channel equalizer. The r.r.c. pulse (Fig. 3.A) and
the sinc pulse (Fig. 2.A) have similar SIR performance. We
point out that with these two pulses and the parameters used
(M = 32, N = 40, α = 0.2) the filter bank is with perfect
reconstruction. The SIR degradation is entirely due to the
channel selectivity. The SIR performance of the Gaussian
pulse is rather poor. In this case a multi-channel equalizer
is mandatory [12]-[13].

A comparison with CP-OFDM is shown in Fig. 3.B. In this
case, the power of the useful term, the ISI and the ICI are
computed from (31)-(33) and they are reported in Appendix
II. In OFDM, when the channel is shorter than the CP, i.e.,
Np ≤ μ = N − M , the ISI and ICI are zero. That is, the
CP-OFDM system maintains the orthogonality [5]. But for
channels longer than the CP it also suffers as a result of ISI and
ICI. Now, comparing Fig. 3.A with Fig. 3.B, we can see that
for small delay spreads CP-OFDM has better SIR performance
than FMT, because the ISI is handled by the CP. However,
as the delay spread increases and the channel becomes longer
than the CP, OFDM also exhibits SIR floors. For instance, with
M = 32 and N = 40, the SIR difference between OFDM and
FMT is only 3 dB for γ = 4.

B. Flat Fast Fading Channel

Now, let us assume the channel to be flat but time-variant.
Elaborating further the formulas of Section IV, we obtain
simple SIR expressions that we report in Appendix III. We
start this section discussing the results of Fig. 4 and Fig. 5
where we plot the SIR as a function of normalized Doppler
fDT . The curves start from fDT = 2×10−6. With bandwidth
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Fig. 3. SIR performance as a function of delay spread in frequency selective
fading. FMT with root-raised-cosine pulse and OFDM with cyclic prefix of
length N-M coefficients.

of 1 MHz, the Doppler equals 50 Hz when fDT = 5× 10−5.
Comparing Fig. 4 with Fig. 5.A, we see that the r.r.c. pulse

yields much better SIR performance than the sinc and the
Gaussian pulse. The gain ranges from a minimum of 20 dB
up to 80 dB. It should be noted that the autocorrelation of the
sinc pulse or the r.r.c. pulse is no longer an ISI free pulse in
the presence of large Doppler, such that ISI is present and it
lowers the SIR.

In Fig. 5.B we report SIR performance for the OFDM
scheme. We see that OFDM is more robust than FMT with the
sinc or the Gaussian pulse, but it performs significantly worse
than FMT with the r.r.c. pulse. In this case, with M = 32
and N = 40, FMT exhibits 30 dB gain at fDT = 0.4× 10−4

over OFDM. In general, the SIR decreases as the number of
tones increases in both systems. For moderate Doppler, since
the ICI is negligible while the sub-channel impulse response
is time-variant and dispersive, the performance of FMT can
be improved with sub-channel adaptive equalization.

C. Joint Time and Frequency Selective Fading Channel

The joint effect of the time and frequency channel selectiv-
ity is illustrated in Fig. 6. The SIR is plotted as a function of
the normalized delay spread γ for several values of maximum
Doppler fDT . The plots show that the SIR for OFDM remains
constant as the CP is longer than the channel. FMT has
superior SIR performance for γ < 1.5 as a result of being more
robust to channel time variations. Then, the two systems have
similar performance. For the parameters herein considered,
the FMT performance is dominated by the channel frequency
selectivity if the normalized delay spread is larger than 1.5,
while for γ < 1.5 it is the Doppler spread that lowers the SIR.

D. Considerations on the Prototype Pulse Design

The SIR results herein obtained can be used to guide the
design of the prototype pulse and the choice of the system
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Fig. 5. SIR performance as a function of maximum Doppler in fast fading.
FMT with root-raised-cosine pulse and OFDM.

parameters. For a certain pulse, e.g., a root-raised cosine pulse,
the formulas allow to determine the SIR as a function of the
pulse duration, roll-off factor, number of tones, over sampling
factor, and channel delay-Doppler spread. In particular, they
allow to determine whether the ICI or the ISI dominates, and
whether it is mostly caused by channel time variations or by
frequency selectivity. As an example, we report the ISI/S and
ICI/S ratios as a function of the length (Fig. 7.A, Fig. 7.B), and
of the roll-off factor (Fig. 7.C, Fig. 7.D), of a truncated r.r.c.
prototype pulse considering several values of delay-Doppler
spread. Fig. 7.A shows that the ISI/S rapidly reaches a floor
that equals the SIR−1 obtainable with an infinite length pulse
(see Fig. 6.A). Fig. 7.B shows that if we increase the filter
length we obtain a better frequency confinement so that the
ICI/S decreases. For a given filter length, a different choice of
the roll-off factor translates into a tradeoff between the amount
of ISI and ICI that the system exhibits, as shown in Fig. 7.C
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Fig. 6. SIR performance in a joint time-frequency selective fading channel.
FMT with root-raised-cosine pulse and OFDM.

and 7.D. As we increase the roll-off, the excess bandwidth
is increased, so that a higher overlapping of the sub-channel
spectra is introduced, i.e., increased ICI. On the contrary, the
impulse response has lower side lobes, so that we experience
lower ISI.

The overall conclusion is that with a truncated r.r.c. pulse,
the performance of FMT is bounded by the sub-channel ISI
rather than by the ICI in time-frequency selective channels. It
is interesting to note (see Figs. 2-5) that although the Gaussian
pulse is a time-frequency confined pulse, it has poorer overall
SIR performance than the band limited r.r.c. pulse in a time-
frequency selective fading channel.

VI. BER ANALYSIS

The SIR analysis of the previous section allows to predict
the BER performance when single tap sub-channel equaliza-
tion is used. That is, with the Gaussian approximation for
the interference, and, for instance with 4-PSK modulation, the
BER on sub-channel k can be approximated as follows [18]

BER(k) =
1
2
− 1

2

√
1
2

(
1

SIR(k)
+

1
SNR(k)

)−1

. (36)

We report in Fig. 8 and Fig. 9 a comparison between the
theoretical BER (36), and the one that is obtained via a Monte
Carlo simulation.

Now, in Fig. 8 we show the BER as a function of the
signal-to-noise ratio for various values of normalized delay
spread γ (with the same channel profile of Section V-A).
With a transmission bandwidth equal to 1 MHz, the delay
spread herein considered ranges between 2 μs to 5 μs. In
Fig. 8.A we consider a 32 sub-channels FMT system with a
r.r.c. pulse with roll-off 0.2, and with N = 40. In Fig. 8.B we
consider OFDM with 32 tones and a CP of length 8. 4-PSK
modulation is used. The two systems have identical data rate
and deploy a single tap equalizer. The figure shows that in
OFDM the theoretical and simulated curves are very close,
while for FMT the discrepancy is more pronounced. This is
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Fig. 7. ISI/S and ICI/S ratios as a function of the root-raised-cosine prototype
filter length and roll-off factor in a joint time-frequency selective fading
channel.

due to the fact that in OFDM the Gaussian approximation
is more accurate because a large number of intercarrier and
intersymbol terms adds up to generate the interference. The
error floor in the OFDM system for γ = {4, 5} is due to
the channel that has duration longer than the CP. The figure
shows that FMT with single tap equalization performs well. As
expected, the CP-OFDM system has better performance than
FMT, i.e., it has lower error floors, for channels with duration
close to the CP length. However, for channels in excess of the
CP length, also the OFDM scheme exhibits high error floors
and the performance of FMT and OFDM become similar.

In FMT more complex sub-channel equalization can yield
lower BER. To this respect, the best attainable performance is
lower bounded by the matched filter bound [25]. The analytical
results of this paper yield, instead, an upper bound to the BER.
To show this, we report the simulated performance of FMT
using a 7 taps minimum-mean-square-error (MMSE) equalizer
with ideal channel knowledge [18]. Now, with improved equal-
ization FMT outperforms OFDM. Further, as the channel delay
spread increases, better performance is exhibited because the
equalizer provides frequency diversity gains [25], [27].

In Fig. 9 we make a comparison between FMT and OFDM
in flat fast fading for various values of normalized Doppler
fDT . The comparison between Fig. 9.A and Fig. 9.B shows
that in fast fading FMT with single tap equalization exhibits
significantly lower error floors than OFDM.

In Fig. 10 we consider several combinations of Doppler and
delay spread values. As the SIR analysis has already shown,
single tap equalization in FMT is sufficient for γ < 1.5,
and smaller losses than in OFDM are experienced as the
Doppler spread increases. For γ = 1.5 the performance of
FMT is dominated by the channel frequency selectivity while
for OFDM by the time selectivity. For γ > 1.5, high error
floors are exhibited by both systems although they are more
pronounced in FMT with single tap equalization.
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Fig. 8. BER for several values of delay spread. FMT with root-raised-cosine
pulse and OFDM with cyclic prefix. The systems have M=32 and N=40. Both
theoretical (THEOR) and simulated (SIM) curves are shown.
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VII. CONCLUSIONS

We have presented an analysis of the effect of time and
frequency selectivity in FMT modulation schemes. We have
obtained quasi-closed form expressions for the signal-to-
interference power ratio. Particular attention has been paid to
overcome the problems of accuracy in the numerical compu-
tation of the integrals. The results allow to characterize the
effect of fading channels in these systems as a function of
the parameters and the Doppler-delay spread. FMT deploys
a frequency confined prototype pulse that makes the scheme
robust to the inter-carrier interference generated by the channel
time and frequency selectivity. Some ISI can arise but it can be
handled with simple sub-channel equalization. In FMT, with a
root-raised-cosine prototype pulse, a simple one tap equalizer
is sufficient to yield superior SIR and BER performance than
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Fig. 10. BER for several values of maximum Doppler and delay spread. FMT
with root-raised-cosine pulse and OFDM with cyclic prefix. The systems have
M=32 and N=40. Both theoretical (THEOR) and simulated (SIM) curves are
shown.

OFDM in fast fading. In frequency selective fading it achieves
similar performance. The results also give guidelines on the
design of the pulse, for instance, they allow to determine the
length and roll-off factor of a r.r.c. pulse that yields a targeted
amount of ICI and ISI in a time-frequency selective channel.

APPENDIX I
INTERFERENCE POWER FOR THE FMT SYSTEM

To calculate the interference power in the FMT case we
need to evaluate P (f ; sT ) = G(k̂)(f)e−j2πfsT ∗ H(k)(−f).
This corresponds to (20) in a single period. The calculation
needs some cumbersome algebra whose main steps are high-
lighted below for the pulses in Table I.

A. Sinc Pulse

P (f ; sT ) = T 2
0

∫ ∞

−∞
rect (T0λ) rect

(
T0

(
λ − f + fk̂ − fk

))
× e−j2πλsT dλ. (37)

The integral (37) can be computed in closed form, which
yields

P (f ; sT ) =

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 |f + fk − fk̂| ≥ 1/T0

P−(f) = T 2
0 /(2πsT )

× (e−j2π(fk̂− 1
2T0

)sT −1/T0 ≤ f + fk − fk̂ ≤ 0

−e−j2π(f+fk+ 1
2T0

)sT )
−e−j2πsT/T0P−(f) 0 ≤ f + fk − fk̂ ≤ 1/T0

(38)
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The unfolded response C
(k̂,k)
gh (f ; sT ) for |f +fk−fk̂| ≤ 1/T0

equals:

C
(k̂,k)
gh (f ; sT ) = |P (f ; sT )|2

= T 4
0 sin2(π(|f + fk − fk̂| −

1
T0

)sT )/(πsT )2. (39)

This expression can be substituted in (18) to obtain (21).

B. Gaussian Pulse

P (f ; sT ) =

T0e
− 1

2

(
(πT2

0 (f+fk−f
k̂
))2

+j2πT2
0 sT σ2(f+fk−f

k̂
)+(sT σ2)2

σ2T2
0

)
.

(40)

Consequently the calculation of C
(k̂,k)
gh (f ; sT ) yields

C
(k̂,k)
gh (f ; sT ) = |P (f ; sT )|2

= T 2
0 e

−
(

(πT2
0 (f+fk−f

k̂
))2

+(sT σ2)2

σ2T2
0

)
. (41)

This expression can be substituted in (18) to obtain (25).

C. Root-Raised Cosine Pulse

P (f ; sT ) = T 2
0

∫ ∞

−∞
RRCOS (T0λ)

× RRCOS
(
T0

(
λ − f + fk̂ − fk

))
e−j2πλsT dλ.

(42)

The result of this convolution is a piecewise trigonometric de-

fined function. The same is for C
(k̂,k)
gh (f ; sT ) = |P (f ; sT )|2.

Among the various intervals we are interested in 0 ≤∣∣f + fk − fk̂

∣∣ ≤ α/T0 because the integral in (18) has
extension limited by |f | < fD. In general no closed form
solution for (18) can be found. For particular cases, as for
instance when we consider fast and flat fading (Section V-B),
(18) can be expressed as a combination of Struve and Bessel
functions [28]-[29].

APPENDIX II
RESULTS IN FREQUENCY SELECTIVE FADING

In this Appendix we obtain analytical results about the
signal and interference power in FMT assuming a frequency
selective channel with uncorrelated quasi-static fading taps.
The results have been used to plot Figs. 2-3.

A. Signal and Interference Power for FMT

When the channel is quasi-static but frequency selective
with independent channel taps, the following simple expres-
sions for the signal and interference power in FMT are
obtained:

S
(k)
FMT = Ma

NP∑
p=0

Ωp |kg (−p)|2 , (43)

M
(k)
ISI−FMT = Ma

∑
m �=0

NP∑
p=0

Ωp |kg (−mN − p)|2 , (44)

where the prototype pulse autocorrelation is equal to

ksinc(p) = Nsinc
( p

N

)
, (45)

kgauss(p) = Ne−
1
2 ( p

N σ)2

, (46)

krrcos(p) = N rcos
( p

N

)
, (47)

when we assume a sinc, a Gaussian, and a r.r.c. prototype
pulse. In (47) rcos(t) denotes the impulse response of a raised
cosine filter (see Table I).

With sinc and r.r.c. pulses the total power of the ICI is
always zero assuming that the sub-carrier spacing is larger
than (1 + α)/T0. With a Gaussian pulse the ICI power is

M
(k)
ICI−FMT = MaN2

∑
m

NP∑
p=0

Ωpe
−
(

(p+mN)σ
N

)2

×
∑
k̂ �=k

e
−
(

πT0(fk−f
k̂
)

σ

)2

. (48)

If we suppose that only two adjacent sub-channels can gener-
ate ICI we can write (48) as

M
(k)
ICI−FMT = 2MaN2e−( πN

σM )2∑
m

NP∑
p=0

Ωpe
−
(

(p+mN)σ
N

)2
.

(49)

B. Signal and Interference Power for OFDM

For the frequency selective static fading channel herein
considered, we can elaborate further (31)-(33) to obtain with
OFDM

S
(k)
OFDM = Ma

min(N−M,Np)∑
p=0

ΩpM
2

+ Ma

min(N−1,Np)∑
p=N−M+1

Ωp(N − p)2, (50)

M
(k)
OFDM−ISI = Ma

∑
m �=0

Np∑
p=0

Ωp

×
M−1∑
i=0

M−1∑
i′=0

rect

(
iT + mT0 + pT

T0

)

× rect

(
i′T + mT0 + pT

T0

)
, (51)

M
(k)
OFDM−ICI = Ma

∑
m

Np∑
p=0

Ωp

×
(

M −
M−1∑
i=0

rect

(
iT + mT0 + pT

T0

))

×
M−1∑
i′=0

rect

(
i′T + mT0 + pT

T0

)
. (52)
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In (51)-(52) the sum in m has a finite number of terms
depending on the channel duration. When the channel is
shorter than the CP, i.e., Np ≤ μ = N −M , the useful power
is S(k) = MaM2

∑NP

p=0 Ωp, while the ISI and ICI are zero.
The formulas (50)-(52) give the power of the signal and the
interference when the channel is longer than the CP [20].

APPENDIX III
RESULTS IN FAST FLAT FADING

In the following we report the analytical results that have
been used to plot the curves in Fig. 4-5. They are derived under
the assumption of fast flat fading with the Clarke’s scattering
model.

A. Sinc Pulse

With a sinc pulse the power of the useful term, of the ISI,
and of the ICI read as follows

S
(k)
FMT =

2MaΩ0N
4

π

(
(fDT )2π

4
− 2fDT

N
+

π

2N2

)
, (53)

M
(k)
FMT−ISI =

MaN2Ω0

π2

∞∑
m=1

1 − J0(2πfDmT0)
m2

, (54)

M
(k)
FMT−ICI =

2MaT 4
0 Ω0

T 2πfD

∑
m

∫ fD

fG

(f − fG)2√
1 − (f/fD)2

× sinc2 ((f − fG)mT0) df. (55)

Note that the power of the ICI (55) is zero when the sub-
channels are separated by more than the maximum Doppler.
Furthermore, note that the power of the useful signal is in
closed form as a function of the maximum Doppler and of
the parameter N . (53) and (54) have been obtained starting
from (22)-(24) exploiting series of functions reported in [28].

B. Gaussian Pulse

With a Gaussian pulse, specializing (26)-(27) in fast flat
fading, we obtain

S
(k)
FMT = MaΩ0N

2e
− 1

2

(
πT0fD

σ

)2
I0

(
1
2

(
πT0fD

σ

)2
)

,

(56)

M
(k)
FMT−ISI = 2MaΩ0N

2e
− 1

2

(
πT0fD

σ

)2
× I0

(
1
2

(
πT0fD

σ

)2
) ∞∑

m=1

e−(mσ)2 , (57)

where I0(t) is the zero-order modified Bessel function of the
first kind [28]-[29]. The total power of the ICI from (29) equals

M
(k)
FMT−ICI =

2MaΩ0N
2

πfD

∑
m

e−(mσ)2
∫ fD

−fD

1√
1 − (f/fD)2

× e
−
(

πT0(f+1/(MT ))
σ

)2
df. (58)

Note that (56) and (57) differ from a constant factor that is
equal to 2

∑∞
m=1 e−(mσ)2 . Increasing σ reduces the ISI, but

increases the ICI.

C. Root-Raised Cosine Pulse

With the r.r.c. pulse, the signal power in flat fast fading
can be expressed as in (59) at the bottom of the page, where
H0,1(t) are the Struve functions of order 0 and 1 which can
be obtained from a series of Bessel functions of the first kind
Jk(t) and order k (see Table I, and [29], pp. 496-497).

The power of the ISI term has a complex expression that is
still a combination of Bessel and Struve functions. It is omitted
for space limits. The power of the ICI cannot be computed in
closed form. However, M

(k)
FMT−ICI is zero if the sub-channels

are spaced more than the maximum Doppler.

D. Rect Pulse (CP-OFDM)

For the CP-OFDM system the power of the useful term and
the ICI can be found from (31) and (33). The computation
yields

S
(k)
OFDM = MaΩ0

M−1∑
i=0

M−1∑
i′=0

J0(2πfDT (i − i′)), (60)

M
(k)
OFDM−ICI = M2MaΩ0

− MaΩ0

M−1∑
i=0

M−1∑
i′=0

J0(2πfDT (i − i′)).

(61)

The total power of the ISI is always zero. Note that (61) is
identical to the one reported in [17].
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