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Abstract—In this paper, we investigate the best attainable per-
formance for filtered multitone modulation (FMT) in time-variant
frequency-selective fading channels when optimal maximum-
likelihood (ML) detection is deployed. FMT generalizes the pop-
ular orthogonal frequency division multiplexing (OFDM) scheme
through the deployment of subchannel shaping filters. The perfor-
mance limits are derived by extending to this multichannel context
the matched filter bounding technique. We first conduct an exact
calculation for the average and the distribution of the matched
filter error rate bound. Then, we follow a numerical procedure
that overcomes the problems of accuracy and ill conditioning in
the implementation of the exact method. This study allows for
an analytical treatment of the diversity effect on performance as
a function of the time/frequency selectivity of the channel. It is
found that FMT is a diversity transform that is capable of yielding
coding gains and time/frequency diversity gains as a function of
the subcarrier spacing and the subchannel filter shape.

Index Terms—Diversity, fading channels, filtered multitone
modulation (FMT), matched filter bound, multicarrier modula-
tion, OFDM, optimal detection.

I. INTRODUCTION

IN this paper, we investigate the performance limits for
multicarrier (MC) modulation over time-variant frequency-

selective fading channels. The basic principle behind MC mod-
ulation is to convert a sequence of data symbols at high rate
into a number of subsequences at low rate [4], [30]. Each low
rate sequence is transmitted through a subchannel that is shaped
with an appropriate filter centered on a given subcarrier. When
the subcarriers are uniformly spaced and the subchannel filters
are identical, an efficient digital implementation is possible and
is generally referred to as filtered multitone modulation (FMT)
[7]. It is based on a fast Fourier transform (FFT) followed by
low rate subchannel filtering. Discrete multitone modulation
(DMT) is a particular implementation that deploys rectangular
time-domain filters. DMT is also referred to as orthogonal
frequency division multiplexing (OFDM) [4].

Channel frequency selectivity introduces intercarrier (ICI)
and intersymbol (ISI) interference at the receiver [7]. The
design of the subchannel filters and the choice of the subcarrier
spacing in an FMT system aim at subdividing the spectrum into
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a number of subchannels that do not overlap in the frequency
domain such that we can avoid the ICI and get low ISI contribu-
tions. In a DMT system, the insertion of a cyclic prefix longer
than the channel time dispersion is such that ISI and ICI are
eliminated and the receiver simplifies to a simple one-tap equal-
izer per subchannel. Clearly, the insertion of the cyclic prefix
as well as an increase of the subcarrier spacing translates into
a data rate penalty. The channel temporal selectivity can also
introduce ICI as a result of loss of subchannel orthogonality
[17], [21]. This happens when the channel is not static over the
duration of the subchannel pulse.

The presence of ISI and ICI is such that some form of multi-
channel equalization is required [3], [7], [21]–[24]. The optimal
receiver searches for the maximum-likelihood (ML) solution
by implementing a multichannel Viterbi algorithm with an
appropriate metric. The optimal FMT detector herein described
is an extension of Ungerboeck’s single-channel equalizer [28]
and van Etten’s multichannel equalizer [29]. It has some simi-
larity with the ML sequence estimator (MLSE)/maximum
a posteriori (MAP) equalizer for space–time coded systems that
we describe in [25].

For uncoded transmission, a limit (lower bound) on the
attainable performance is given by the probability of error
achieved with ideal equalization, i.e., matched filter perfor-
mance bound (MFB). That is, the bit-error rate (BER) achieved
when the ML receiver is capable of canceling all interfer-
ence components. The analysis of the MFB has attracted
considerable attention since it allows for an analytical treat-
ment of the diversity effect on performance as a function of
the channel time and frequency selectivity. Mazo has studied
the exact MFB for two-beam static Rayleigh fading [13].
Clark et al. have evaluated the MFB in static frequency-
selective Rayleigh fading with (spatial) diversity combining
receivers [8]. Schlegel has considered the multibeam static
Rayleigh fading channel [15]. More recently, [1] and [11]
have extended the study to doubly (time–frequency) disper-
sive channels. In [1], [8], and [11], the derivation of the
average MFB error rate, taken over the ensemble of channel
responses, starts from the Karhunen–Loève expansion of the
received pulse.

In this paper, we study the MFB performance of uncoded
FMT modulation. First, we develop an equivalent discrete-
time doubly dispersive channel model. This is followed by the
derivation of the distribution of the squared distance that is
associated with a pairwise single error event. Such a distribution
is obtained through the residues method of a normal quadratic
form [5], [15]. Unfortunately, the residues method becomes
numerically inaccurate and ill conditioned in the presence of
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multiple poles. To overcome such a problem, we also evaluate
the average probability of error with a numerical method based
on a Gauss–Chebyshev quadrature rule that has recently been
presented in [19].

Our study includes the effect of the prototype pulse, the
number of tones, the digital-to-analog and analog-to-digital
converter (DAC and ADC) filters, as well as the impact on per-
formance of the channel time–frequency selectivity. The MFB
analysis reveals that FMT modulation can be interpreted as a
diversity transform. When optimally detected, FMT modulation
is capable of yielding coding and diversity gains as a function of
the subchannel filter impulse response, the number of tones, and
the time–frequency characteristics of the channel. In general,
an increase in the number of subcarriers translates into a loss of
achievable frequency diversity gain but into an increase in the
time diversity gain.

This paper is organized as follows. In Section II, we describe
the discrete-time transmission model, review the optimal ML
FMT detector, and discuss some implications about complex-
ity. In Section III, we carry out the performance analysis.
An analysis of the effect of channel frequency and temporal
selectivity is reported in Section IV, where we also summarize
some results on the performance of conventional detection of
OFDM. Numerical results are reported in Section V. Finally,
the conclusions follow. The notation used is summarized in the
footnote.1

II. TRANSMISSION AND RECEPTION MODEL WITH FMT

An MC-modulated signal (complex low-pass representation)
can be written as

x(t) =
∑
k∈K

∑
l∈Z

ak(lT0)g(t − lT0)ej2πfkt,

t ∈ R; K = {0, . . . , M − 1} (1)

where ak(lT0) is the sequence of complex data symbols, e.g.,
belonging to M -quadrature-amplitude modulation (QAM) or
M -phase-shift keying (PSK), transmitted on subchannel k at
rate 1/T0 with T0 = NT ; g(t) is a subchannel shaping filter
(prototype filter); and K is the set of subcarrier indices k. The
subchannel carrier frequency is fk, and in general N ≥ M .

We consider a discrete-time implementation that is obtained
by sampling (1) at rate 1/T , which yields

x(iT ) =
∑
k∈K

∑
l∈Z

ãk(lT0)gk
T (iT − lT0) i ∈ Z (2)

1Notation. a denotes a column vector. A denotes a matrix. ∗ denotes conju-
gation. T denotes transposition. H denotes conjugate transposition. |A| is the
determinant of A. rank{A} is the rank of matrix A. diag{a} is a diagonal
matrix with diagonal elements given by a. diag{A,B, . . .} is a block diagonal
matrix with blocks given by A,B, . . .. toepz{a} is the Hermitian Toeplitz ma-
trix with the first row equal to aT. toepz{A0,A1, . . .}, with Ai square
matrix of size N , denotes a block Hermitian Toeplitz matrix with the first row
of blocks equal to A0,A1, . . .. The integer division and the remainder of
the integer division are denoted as a div b and a mod b. Re{·} denotes the
real part. G(f) = F{g(t)} is the Fourier transform of g(t). rep1/T {G(f)}
is the periodic repetition with rate 1/T of G(f). j is the imaginary unit.

Q(x) = 1/
√

2π
∫ ∞

x
e−t2/2dt is the Q-function. 1(t) is the step-function.

rect(i/N) = 1 for i ∈ [0, N − 1] and 0 otherwise. sinc(i) = sin(πi)/(πi).

Fig. 1. FMT system with minimal subcarrier spacing (baseband
representation).

when we define the subchannel transmit filter as gk
T (t) =

g(t)ej2πfkt (frequency shifted prototype pulse) and ãk(lT0) =
ej2πfklT0ak(lT0). An efficient implementation, referred to as
FMT, is possible when the subcarriers are uniformly spaced,
i.e., fk = k/T1 with T1 = MT . It comprises the S/P conversion
of the data symbol stream, an M -point inverse FFT (IFFT),
and low-rate subchannel (polyphase) filtering [7]. This imple-
mentation is depicted in Fig. 1, where we assume minimal
subcarrier spacing (critically sampled FMT system) and, there-
fore, we can set N = M , ãk(lT0) = ak(lT0), and gk(lT0) =
g(kT + lT0).

The subchannel has nominal bandwidth 1/T0 ≤ 1/T1 that,
for fixed T , becomes smaller as the number of subcarriers
increases. With a sufficiently high number of subcarriers, the
unfolded spectrum of (2) has width almost entirely confined
in W = 1/T . This can be practically achieved by avoiding
transmission over some of the outermost subcarriers. As an
example, we consider the deployment of rectangular time-
domain prototype pulses, rectangular frequency domain pulses,
and Gaussian pulses

grect(i) = grect(iT ) =
1√
N

rect
(

i

N

)
gsinc(i) =

1√
N

sinc
(

i

N

)

ggauss(i) =
√

σ

N
4

√
2
π

e−(σi
N )2

(3)
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where σ = Bπ
√

2/ ln 2 and B = f3-dBT0 is the normal-
ized bandwidth. Note that the Gaussian pulses have the
interesting property of having concentrated impulse and fre-
quency response.

A. Discrete-Time Channel Model

The MT signal (2) is digital-to-analog converted, modulated
to radio frequency (RF), and transmitted over the air. The
received signal is RF demodulated and analog-to-digital con-
verted (Fig. 1). Let gch(τ ; t) be the baseband impulse response
of the time-variant fading channel. The concatenation of the
filters in the DAC, the channel, and the filter in the ADC has
a time-variant impulse response hE(τ ; t)/T . If we assume the
channel to be practically time invariant over the duration of
the ADC filter whose main lobe has duration ∼ 2T , we can
approximate it as

hE(τ ; t) ≈
∫
R

gch(τ1; t)gB(τ − τ1)dτ1 (4)

with gB(τ) =
∫

R
gADC(τ1)gDAC(τ − τ1)dτ1 [21]. Conven-

tionally, the analog filters in the DAC and ADC are square-
root-raised cosine filters with Nyquist frequency 0.5/T . Thus,
the sequence of received samples at rate 1/T (assuming exact
sampling phase) can be written as

y(iT ) =
∑
n∈Z

x(nT )hE(iT − nT ; iT ) + w(iT ) (5)

where w(iT ) is a sequence of independent identically distrib-
uted (i.i.d.) circularly symmetric complex Gaussian random
variables with zero-mean and variance N0. Note that with the
above assumptions, the channel is not necessarily static over
the duration of the prototype pulse. If we define the equivalent
subchannel receive filter as

gk
R(τ ; t) =

∑
i∈Z

gk
T (iT )hE(τ − iT ; t) (6)

the broadband received signal can be written as the superposi-
tion of M narrowband signals

y(iT ) =
∑
k∈K

∑
l∈Z

ãk(lT0)gk
R(iT − lT0; iT ) + w(iT ). (7)

If we assume wide sense stationary uncorrelated scattering
(WSSUS) and a common time selective correlation function
across the delay profile [1], [2], [10], the channel is a zero mean
complex Gaussian process with autocorrelation

rg(τ1, τ2; t1, t2) =E [gch(τ1; t1)g∗ch(τ2; t2)]

=φg(τ1)ψd(t2 − t1)δ(τ2 − τ1) (8)

where φg(τ) denotes the delay power spectrum while ψd(t)
denotes the time-selective correlation function. In the litera-
ture, several models are available to represent the delay power
spectrum, for instance, the one-sided exponential model, or the
Gaussian model [6], [8]. Impulsive models are also used, for

instance, the Third Generation Partnership Project-International
Telecommunication Union (3GPP-ITU) channel models [12].
For the Doppler spectrum, we use the Jakes’ model that is
derived under the assumption of isotropic scattering [10]. For
this model, ψd(t) = J0(2πfDt), where J0(t) denotes the zero-
order Bessel function of the first kind and fD is the one-sided
Doppler spread. It follows that

rh(τ1, τ2; t1, t2)

= E [hE(τ1; t1)h∗
E(τ2; t2)]

= J0 (2πfD(t2 − t1))

×
∫
R

φg(τ3)gB(τ1 − τ3)g∗B(τ2 − τ3)dτ3. (9)

We can represent the discrete-time channel impulse response
with a T-spaced tapped delay line

hE(nT ; iT ) =
∑
p∈P

αp(iT )δ(nT − pT ),

P = {−NP , . . . , NP } (10)

that has Gaussian-distributed tap gains with correlation
E[αp1(i1T )α∗

p2
(i2T )] = rh(p1T, p2T ; i1T, i2T ).

Throughout this paper, we use matrix notation.1 In particular,
we denote the channel taps mean vector as m = E[α] and
the correlation matrix as R = E[ααH], where the vector α is
defined as

α =
[
αT

−L, . . . ,αT
L

]T
, αi = [α−NP

(iT ), . . . , αNP
(iT )]T

(11)

for given integers NP , L, and i = −L, . . . , L. The correlation
matrix is Hermitian, with size (2NP + 1)(2L + 1), and with
elements rh(p1T, p2T ; i1T, i2T ). To proceed further, if we use
the numerical integration of (9), we can write

rh(p1T, p2T ; i1T, i2T ) = J0 (2πfD(i2 − i1)T )

×
NL∑

l=−NL

φlgB(p1T − lTc)g∗B(p2T − lTc) (12)

with φl = Tcφg(lTc), Tc = T/K, and K ≥ 1. Then, in matrix
notation, we have

R =E[ααH] = toepz
{
GH

BΦ0GB , . . . ,GH
BΦ2LGB

}
(13)

Φi =J0(2πfDiT )diag {φ−NL
, . . . , φNL

} (14)

GB =

 gB(−NP T + NLTc) . . . gB(NP T + NLTc)
. . . . . . . . .

gB(−NP T − NLTc) . . . gB(NP T − NLTc)

 .

(15)

B. Optimal Multitone Detection

The optimal multitone detector has been described in
[21]–[24] for the more general multiuser context. For the
scenario of this paper, it basically consists of a bidimensional
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equalizer that deals with both the ICI and the ISI by imple-
menting a Viterbi algorithm with an appropriate metric. Under
certain conditions, it simplifies into a bank of single-channel
Viterbi equalizers. This is shown in what follows.

Given the model in (7), the optimal ML detector seeks the
data sequence b = {bk(lT0)}, l ∈ Z, k ∈ K={0, . . . ,M − 1},
that minimizes the accumulated squared Euclidean distance
∆e =

∑
i∈Z

|y(iT )−
∑

l∈Z

∑
k∈K b̃k(lT0) gk

R(iT − lT0; iT )|2.
We can partition the accumulated distance as (neglecting a
constant additive term)

∆e ∼ − Re

{∑
l∈Z

∑
k∈K

bk∗
(lT0)e−j2πfklT0

×
(

2zk(lT0) −
∑
l′∈Z

∑
k′∈K

bk′
(l′T0)

× ej2πfk′ l′T0sk,k′
(l; l′)

)}
(16)

zk(lT0) =
∑
i∈Z

y(iT )gk∗

R (iT − lT0; iT ) (17)

sk,k′
(l; l′) =

∑
i∈Z

gk∗

R (iT − lT0; iT )gk′

R (iT − l′T0; iT ). (18)

Let us define the index relations m = k + lM − 1, l(m) =
m div M , and k(m) = m mod M , for k = 0, . . . ,M − 1,
l,m ∈ Z. Then, the accumulated distance can be written as
∆e ∼−

∑
m∈Z

Re{b∗m[2zm−
∑

m′∈Z
bm′sm,m′ ]}, where bm =

bk(m)(l(m)T0)ej2πfk(m)l(m)T0 , zm = zk(m)(l(m)T0), and
sm,m′ = sk(m),k(m′)(l(m); l(m′)).

Since sm,m′ = s∗m′,m, we can finally rewrite (16) as

∆e ∼ −
∑
m∈Z

Re

{
b∗m

(
2zm − bmsm,m

− 2
∑

m′>0

bm−m′sm,m−m′

)}
. (19)

Therefore, the search for the ML transmitted sequence can be
implemented with a Viterbi algorithm [14]. The search algo-
rithm sequentially processes the z-parameters (17) (subchannel
matched filter outputs).

Using (10), the s-parameters (18) can be written as

sk,k′
(l; l′) =

∑
i∈Z

∑
p,p′∈P

(
α∗

p(iT )αp′(iT )gk∗

T (iT − lT0 − pT )

× gk′

T (iT − l′T0 − p′T )
)
. (20)

Their computation requires knowledge of the time-variant
channel taps or of the equivalent subchannel impulse responses.
The s-parameters correspond to the subchannel cross correla-
tions, and therefore, they give the ISI and ICI weight com-
ponents as a function of the propagation conditions and the
subchannel transmission pulse.

The complexity of the optimal detector is determined by
the number of states in the Viterbi algorithm that is equal
to CJ , where C denotes the constellation size and J is an
integer such that sm,m−m′ = 0 for m′ > J . The memory J ,
and therefore the algorithm complexity, is a function of both the
channel and the prototype pulse as we illustrate in the next two
examples.

If we assume a static channel that does not vary over the dura-
tion of the detection frame, i.e., αp(iT ) = αp, using Parseval’s
theorem, (20) can be rewritten as

sk,k′
(l; l′) = T−1

∑
p,p′∈P

α∗
pαp′

×
0.5/T∫

−0.5/T

rep 1
T

{
G∗(f − fk)ej2πf(lT0+pT )

}

× rep 1
T

{
G(f − fk′)e−j2πf(l′T0+p′T )

}
df

(21)

where G(f) = F{g(t)} with t, f ∈ R. If the subchannel filters
are band limited with a bandwidth smaller than the subcarrier
spacing, the s-parameters are zero for k 	= k′. Therefore, the
multichannel detector simplifies into M single-channel ML
detectors that have to deal with the ISI only. With sinc pulses
(ideal FMT), the condition is met. With rect pulses (DMT),
the ICI interference is high, which increases the complexity of
the optimal detector. In the latter case, simplified detection is
possible when deploying a cyclic prefix, see Section IV-C.

If we assume a time-variant single tap channel, (20) can be
rewritten as

sk,k′
(l; l′) = ej2π(fklT0−fk′ l′T0)

×
∑
i∈Z

ej2π(fk′−fk)iT |α(iT )|2 g∗(iT − lT0)g(iT − l′T0).

(22)

If the prototype filter has a duration smaller than T0, the
s-parameters are zero for l 	= l′, while for l = l′, sk,k′

(l; l) =∑
i ej2π(fk′−fk)iT |α(iT )|2|g(iT − lT0)|2. With rect pulses, the

condition is met; therefore, a time-variant channel does not
introduce ISI. However, ICI is present such that the optimal
detector must jointly detect all subchannels. With sinc pulses,
the complexity grows even more because ISI also exists.

To minimize the amount of ICI and ISI, and keep the detec-
tion complexity at low levels, it is desirable to use time and
frequency concentrated pulses, e.g., Gaussian-shaped pulses
[24]. In the next sections, we study how the design parameters
(prototype pulse and number of tones) impact performance.

III. PERFORMANCE LIMITS OF OPTIMAL MT DETECTION

Under the hypothesis of perfect knowledge of the channel
state information s (s-parameters), the pairwise error proba-
bility (PEP), i.e., the probability that the optimal MT detector
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decides erroneously in favor of the sequence b = {bk(lT0)},
k ∈ K, l ∈ Z, when a = {ak(lT0)} was transmitted, is
given by

P (a → b|s) = Q

√
d2(a,b)

2N0

 (23)

where the pairwise error event squared distance is

d2(a,b) =
∑
i∈Z

∣∣∣∣∣∑
l∈Z

∑
k∈K

ek(lT0)gk
R(iT − lT0; iT )

∣∣∣∣∣
2

(24)

ek(lT0) = ej2πfklT0
(
ak(lT0) − bk(lT0)

)
. (25)

Using the s-parameter definition, we obtain

d2(a,b) =
∑

l,l′∈Z

∑
k,k′∈K

ek∗
(lT0)ek′

(l′T0)sk,k′
(l; l′). (26)

The average (over the ensemble of channel responses) PEP is
the result of the expectation

P (a → b) = E

Q

√
d2(a,b)

2N0

 . (27)

Starting from (27), in what follows we derive error probabil-
ity limits for uncoded transmission. For uncoded transmission,
single error events are possible such that the detected sequence
may differ only in one data symbol from the transmitted se-
quence. In the literature, the corresponding PEP is referred to as
the MFB [1], [8], [11]. The MFB represents a performance limit
(lower bound) that can be achieved with perfect equalization,
i.e., when the ML receiver cancels all interference components
or equivalently when a single isolated pulse is transmitted.
Assuming i.i.d. equiprobable binary PSK (BPSK) or quaternary
PSK (QPSK) data symbols, the MFB yields a lower bound to
the bit error probability of the ML detector.

Let us assume the single error event ek(lT0) to occur on
subchannel k and at time instant lT0. Then, the error event
distance (26) can be written as

d2
MFB(k, l) =Des

k,k(l; l)

=De

∑
i∈Z

∑
p,p′∈P

(
α∗

p(iT + lT0)αp′(iT + lT0)

× ej2πfk(pT−p′T )g∗(iT − pT )g(iT − p′T )
)

(28)

where De = |ek(lT0)|2 is the squared Euclidean distance be-
tween the transmitted and the detected data symbol. For BPSK
signaling, De = 4ES with ES equal to the average symbol
energy. In general, (28) is a function of the subchannel index,
the time instant, and the symbol error event.

To proceed, let us assume the channel response and the
prototype pulse to have (practically) finite duration. Then,

P = {−NP , . . . , NP } and g(iT ) = 0 for i 	∈ {−Ng, . . . , Ng}.
Setting L = Ng + NP , with matrix notation we obtain

d2
MFB(k, l) = De

∑
i∈Z

αH
i+lNWH

k,0GiWk,0αi+lN

= αHWH
k GWkα (29)

where α is defined in (11) and

gi = [g(iT + NP T ), . . . , g(iT − NP T )]T

Gi =g∗
ig

T
i , i = −L, . . . , L

G = diag{G−L, . . . ,GL}
Wk,0 = diag{e−j2πfkNP T , . . . , ej2πfkNP T }
Wk = diag{Wk,0, . . . ,Wk,0︸ ︷︷ ︸

2L+1

}. (30)

Since the vector of channel taps α is Gaussian, (29) is a normal
quadratic form [9], [16] (see Appendix A).

We note that when the channel impulse response is sparse, it
is possible to reduce the size of the vectors and matrices in (29).
That is, we can write d2

MFB(k, l) = Deα̂
HŴH

k ĜŴkα̂, where
α̂ is obtained by deleting the zero components of α, while Ĝ
and Ŵk are obtained by deleting the rows and columns with
indices corresponding to the zero elements of α.

In the following sections, we evaluate the MFB error prob-
ability in Rayleigh fading by applying three methods. The
first is based on the application of the residues method where
the probability density function (pdf) of the quadratic form
(29) is computed in closed form. In the second approach, we
follow a recently proposed numerical method to compute the
expectation (27). Finally, we study the Chernoff bound.

A. Residues Method and Gauss–Chebyshev
Numerical Quadrature Method

Assuming the channel taps to be zero mean circularly sym-
metric complex Gaussian (Rayleigh fading), (29) is a central
normal quadratic form [5], [15], [16]. Let R = E[ααH] be
the channel correlation matrix that we assume to be full rank.
Although not explicitly shown for ease of notation, we assume
the reduced size vectors that are obtained through deletion of
the zero components of α (see previous section). Using some
results on quadratic forms that are summarized in Appendix A,
the squared MFB distance can be rewritten as

d2
MFB(k) =

Nλ∑
i=1

λi|βi|2 (31)

where λi are the Nλ eigenvalues of the matrix DeRĜk with
Ĝk = WH

k GWk and βi are i.i.d. complex Gaussian random
variables with zero mean and unit variance. Note that we
have dropped the dependency on l since we assume to be in
stationary conditions.

The pdf pd2
MFB

(a) and the probability distribution function
Fd2

MFB
(a) of (31) can be found through the inversion of the
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characteristic function (see Appendix A). Let us assume that
we have N ′ out of Nλ distinct eigenvalues λ1, . . . , λN ′ , each
with multiplicity m1, . . . ,mN ′ , then

pd2
MFB

(a) =
N ′∑
i=1

mi∑
n=1

Ai,n
an−1

λn
i (n − 1)!

e
− a

λi , a ≥ 0 (32)

Fd2
MFB

(a) =
N ′∑
i=1

mi∑
n=1

Ai,n

(
1 − e

− a
λi

n−1∑
l=0

(
a

λi

)l 1
l!

)
, a ≥ 0

(33)

where Ai,n are the coefficients of the partial fraction expansion
of the characteristic function (residues)2

Ai,n =
1

(−λi)mi−n(mi − n)!

×

 dmi−n

dsmi−n


N ′∏

p=1,p	=i

(1 − λps)−mp




s= 1
λi

. (34)

It follows that the distribution of the squared distance is a
weighed sum of Erlang distributions.

Now, the average matched filter probability of error bound is
computed as Pe,MFB =

∫
R+ Q(

√
a/(2N0))pd2

MFB
(a)da. The

integral can be evaluated in closed form (e.g., see [8]) yielding

Pe,MFB(k) =
1
2

N ′∑
i=1

mi∑
n=1

Ai,n

×

1 −
n−1∑
l=0

(2l)!
22l(l!)2

√√√√√ λi

4N0(
1 + λi

4N0

)2l+1

 . (35)

For BPSK and QPSK signaling, the matched filter BER bound
on subcarrier k, BER(k), is given by (35) when De is, re-
spectively, set to De = 4ES and De = 2ES . Further, the BER
complementary distribution equals (33)

P

[
BER(k) ≥ Q

(√
a0

2N0

)]
= Fd2

MFB
(a0). (36)

The average (across subchannels) BER can be defined as

BER =
1
M

∑
k∈K

BER(k). (37)

The analysis is sufficiently general to be applied to higher-
order constellations, e.g., M -QAM. We report numerical results
corresponding to (35)–(37) for various transmission scenarios
in Section V.

In the presence of multiple eigenvalues [poles of the charac-
teristic function of (31)], accurate computation of the residues
(34) becomes a numerically ill-posed problem [19]. A possible

2Note that when there is a single eigenvalue with multiplicity m, the
coefficients in (34) are all zero with the exception of A1,m = 1. When there
are N distinct eigenvalues, Ai,1 =

∏N

p=1,p �=i
(1 − λp/λi)

−1.

way to circumvent it is to calculate the pdf (32) through the FFT
of the product form of the characteristic function (Appendix A).
Then, the distribution and the average error probability are
obtained using numerical integration. Alternatively, in [19], it
is proposed to numerically evaluate expectations of the form
E[Q(

√
ξ)] through a procedure that involves the computation of

the moment generating function Φ∆(s) = E[e−s∆] of the ran-
dom variable ∆ = ξ − ν2 with ν as a zero-mean unit-variance
Gaussian and ξ a nonnegative random variable independent
of ν. Then, through the application of a Gauss–Chebyshev
numerical quadrature rule with w nodes, we obtain

Pe,MFB(k) =E
[
Q(

√
ξ)
]

=
1

4w

w∑
n=1

(Re {Φ∆ (c(1+jτn))}

+ τnIm {Φ∆(c(1+jτn))})+Ew (38)

with 0 < c < 1/2 and τn = tan((n − 0.5)π/w). The error Ew

goes to zero as the number of nodes w goes to infinity. Details
on the computation of Φ∆(s) when ξ = d2

MFB/(2N0) can be
found in Appendix B.

B. Gaussian Tail Function Bound

To get further physical insight, we study the Chernoff
bound on (27). The Gaussian tail probability can be bounded
as Q(a) ≤ 0.5e−a2/2 [14]. Thus, we can write Pe,MFB(k) ≤
0.5 exp(−1/(4N0)

∑Nλ

i=1 λi|βi|2). Then, averaging over the
distributions of |βi|2 (exponential), we obtain

Pe,MFB(k) ≤ 1
2

Nλ∏
i=1

(
1 +

λi

4N0

)−1

≤ 1
2

(
ES

4N0

)−d ∏
λi 	=0

(
λi

ES

)−1

(39)

where d equals the number of nonzero eigenvalues. This upper
bound is useful to understand how the subchannel filter and the
subcarrier spacing impact the MFB performance. It reveals that
FMT modulation can be interpreted as a diversity transform
that performs subchannel time or spectrum spreading as a
function of the prototype filter and the subcarrier spacing, and
in particular as follows.

1) FMT modulation with optimal detection can provide both
diversity gain and coding gain over uncoded single carrier
transmission through a flat Rayleigh fading channel. The
diversity gain d equals the number of nonzero eigenvalues
of DeRĜk with Ĝk = WH

k GWk, while the product of
the nonzero eigenvalues gives the coding gain.

2) The diversity gain satisfies the bound d ≤ min{rank(R),
rank(Ĝk)}. If the channel is frequency selective but time
invariant, then 1 ≤ d ≤ N̂P , where N̂P equals the num-
ber of nonzero T-spaced channel taps. If the channel is
frequency nonselective but time variant, then 1 ≤ d ≤ L̂
with L̂T equal to the prototype pulse duration.
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A detailed discussion is given in the next section; how-
ever, it is clear that subchannel bandwidth expansion poten-
tially increases the frequency diversity gain while subchannel
bandwidth compression (pulse duration expansion) increases
the time diversity gain.

We note that the above conclusions are based on the
MFB analysis. Nevertheless, several results from simulation in
[21]–[24] show that near MFB performance is achievable by
deploying practicable maximum-likelihood detection schemes
that are based on iterative interference cancellation techniques.
Finally, it is interesting to note that some analogy exists with
the analysis of the Chernoff bound on the PEP in space–time
coded systems [20]. However, in the system that we consider,
the multitone transform acts as a code that takes place across
subchannels and not across antennas.

IV. DISCUSSION

In this section, we investigate the MFB probability of error
assuming first a time-invariant frequency-selective channel and
then a time-variant flat-fading channel. These are two major
scenarios that can be considered representative, respectively, of
wideband communications and narrowband communications.
Further, we briefly review the performance of conventional
detection of OFDM with cyclic prefix.

A. Time-Invariant Frequency-Selective Channel

In this section, we assume the channel to be time invariant
but frequency selective. The vector of channel taps is inde-
pendent of time and according to (11) is denoted as α0 =
[α−NP

, . . . , αNP
]T. Thus, we can rewrite the squared error

distance as

d2
MFB(k) = Deα

H
0 WH

k,0κW k,0α0 =
2NP +1∑

i=1

λi|βi|2 (40)

where κ =
∑

i Gi is the prototype pulse autocorrelation ma-
trix3 with elements (κ)p,p′ = κ(p − p′) =

∑
i g∗(iT )g(iT +

pT − p′T ), while Wk,0 is defined in (30). The 2NP + 1
eigenvalues λi in (40) are the ones associated with the matrix
DeRWH

k,0κWk,0, where R = E[α0α
H
0 ] = GH

BΦ0GB . The
achievable diversity gain equals the number of nonzero eigen-
values and is lower or equal to 2NP + 1.

A first interesting observation is that when the T-spaced
channel taps are uncorrelated, i.e., R is diagonal, the matched
filter error rate bound is not a function of the subchannel index
k. This is because the eigenvalues of DeRWH

k,0κWk,0 are
independent of the index k. On the contrary, when the channel
taps are correlated, the error rate performance may differ across
the subchannels. Since we consider uncorrelated scattering, Φ0

is diagonal. Therefore, in our model, correlation among the
T-spaced channel taps can be introduced by the DAC–ADC

3With a rect, a sinc, or a Gaussian prototype pulse, the autocorrela-
tion coefficient can be calculated in closed form, yielding: κrect(p) =
1 − |p|/N if |p| ≤ N , 0 otherwise, κsinc(p) = sinc(p/N), κgauss(p) =
exp(−0.5(σp/N)2), where the last expression holds for B/N � 1.

filters. The effect of these filters is included in the matrix GB

that is defined in (15).
In general, the above results show that performance depends

on the prototype pulse and the number of subcarriers. As we
will illustrate in the numerical examples of Section V, the
matched filter bound reveals that when transmission is through
a frequency-selective channel, we get diminished frequency
diversity gains as the number of subcarriers increases, indepen-
dently of the prototype pulse. In particular, when the number of
subcarriers tends to infinity, the MFB performance tends to the
error rate that is achieved in flat fading such that no frequency
diversity is exploited. This can be proved by observing that the
squared distance (40) becomes

d2
MFB,M=N→∞(k) = Deα

H
0 Fkα0 (41)

where Fk = toepz{[1, e−j2πfkT, e−j2πfk2T, . . . , e−j2πfk2NP T ]}
and 0 ≤ fk < 1/T . Since Fk has rank 1, the matrix RFk has
a single nonzero eigenvalue equal to λ(k) = trace(RFk)=∑

n,m∈P Rn,mej2πfk(m−n)T with Rn,m = E[αnα∗
m]. If the

channel taps are uncorrelated, all subchannels exhibit the same
MFB performance since λ = trace(RFk) = trace(R) = 1
(with a normalized power delay profile). If the channel taps
are correlated and the number of subcarriers tends to infinity,
the average error rate becomes larger or equal to the error
rate in flat fading. In fact, we have that

∑
k∈K Pe(λ(k))/M ≥

Pe(λ) since Pe(·) is a convex function.
Another interesting situation is when we set M = N = 1,

which corresponds to single carrier modulation. According to
the model in (5), pulse shaping is implemented by the DAC
filter. The squared distance becomes

d2
MFB,M=N=1(k) = Deα

H
0 α0 = De

∑
p∈P

|αp|2. (42)

Therefore, the achievable diversity gain equals the rank of the
matrix DeGH

BΦ0GB and can be as large as the number of
nonzero T-spaced channel taps.

B. Time-Variant Frequency-Nonselective Channel

If we assume the channel to be frequency nonselective (flat)
but time variant, we obtain

d2
MFB =De

∑
i∈Z

|α(iT )|2 |g(iT )|2

=Deα̂
HĜα̂ =

2Ng+1∑
i=1

λi|βi|2 (43)

where λi are the eigenvalues of DeE[α̂α̂H]Ĝ=DeR̂Ĝ with
α̂=[α(−NgT ), . . . , α(NgT )]T, Ĝ=diag{|g(−NgT )|2, . . . ,
|g(NgT )|2}. The squared distance is identical over all
subchannels.

If the channel is fully uncorrelated (ergodic), we have
2Ng + 1 eigenvalues λi = De|g(iT )|2. In particular, with a
rect prototype pulse, we get one eigenvalue λi = De/N with
multiplicity N . It follows that an increase in the number of
subcarriers translates into increased temporal diversity gains.



2128 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005

If the number of subcarriers goes to infinity, the distribution
(33) goes to Fd2(a) = 1(a − De), i.e., the squared distance
becomes deterministic.4 Thus, the probability of error tends to
the probability of error in the absence of fading [additive white
Gaussian noise, (AWGN) only].

With single carrier transmission, we can write d2
MFB,M=N=1=

De|α(0)|2; therefore, there is only one eigenvalue λ = De and
consequently there is no temporal diversity exploitation. Recall
that we have assumed the channel to be static over the duration
of the ADC filter.

C. DMT With Cyclic Prefix and Conventional Detection

DMT with cyclic prefix is a popular multitone scheme that
uses a rectangular prototype pulse. It is often referred to as
OFDM with cyclic prefix. The efficient implementation of
this scheme comprises at the transmitter an M -point IFFT
followed by the insertion of a cyclic prefix of duration µT =
(N − M)T . In this scheme, the number of subchannels is M
and the symbol rate per subchannel is 1/T0 with T0 = NT .
At the receiver, the conventional detector disregards the cyclic
prefix, it runs an M -point FFT, and finally it computes the
decision statistics independently for the M subchannels. If the
cyclic prefix is longer than the channel time dispersion, no ISI
is present. However, if the channel is time variant over the
duration of the FFT block, ICI is introduced [17], [18], [21].
If we assume Rayleigh faded channel taps with Jakes’ Doppler
spectrum, the BER performance of the conventional detector
can be computed using the Gaussian approximation for the ICI.
The computation of the bit error probability for BPSK–QPSK
signaling on channel k yields

Pe(k) =
1
2

[
1 −

√
KeES,k

2(N0 + Ik) + KeES,k

]
(44)

with Ke = 2 for BPSK and Ke = 1 for QPSK. In (44), the
average useful signal power of subchannel k is

ES,k =
ES

MN

∑
p,p′∈P

Rp,p′ej 2π
M k(p′−p)

×
∑

n,n′∈K
J0 (2πfDT (n − n′)) (45)

while the power of the zero mean ICI is

Ik = − ES,k +
ES

N

×
∑

l={−1,0,1}

∑
n,n′∈K

∑
p,p′∈P

(
Rp,p′ej 2π

M k(p′−p)

× J0 (2πfDT (p − p′ − lM))

× δ(n − n′ − p + p′ + lM)
)

(46)

4This can be proved as follows. For M = N tending to infinity, the charac-
teristic function of the squared distance converges to limN=M→∞(M/(M −
jbDe))M = ejbDe . That is, it converges in characteristic function, therefore,
also in distribution, to the constant De.

where Rp,p′ = E[αp(iT )α∗
p′(iT )], K = {0, . . . , M − 1}, P =

{0, . . . , 2NP }, M > µ ≥ 2NP . Therefore, we conclude that
although conventional detection of DMT-CP is simple, it does
not exploit the frequency diversity and suffers from the ICI
introduced by the time-variant channel.

V. NUMERICAL RESULTS

In this section, we report several numerical results for the
average and the distribution of the matched filter BER bound
in various propagation conditions. The results are obtained
assuming BPSK signaling and square-root-raised cosine filters
in the DAC and ADC with a roll-off factor equal to 0.22. They
apply to QPSK signaling by simply shifting the signal-to-noise
ratio (SNR) by 3 dB. We choose the prototype pulse to be either
rectangular in time (rect pulse), or rectangular in frequency
(sinc pulse), or Gaussian (gauss pulse). The subcarrier spacing
is minimal, i.e., M = N , T1 = T0.

In Fig. 2, we show the MFB BER complementary dis-
tribution as a function of the subcarrier index assuming
ES/N0 = 10 dB and a Gaussian prototype pulse with nor-
malized bandwidth B = 0.33. In the top figures, the chan-
nel is assumed to experience quasi-static (time-invariant over
the prototype pulse duration) Rayleigh fading with a one-
sided exponential power delay profile with root mean square
(rms) delay spread τ0 =7.5 T. The DAC–ADC filters are
oversampled by a factor K =16. Thus, the channel delay
power profile reads φg(nTc) = e−nTc/τ0(1 − e−Tc/τ0)/(1 −
e−(max(n)+1)Tc/τ0) with n = 0, . . . , �10τ0/Tc
 and Tc =
T/16. This model is also known as the Chayat channel model
[6]. As it can be seen in the top plots of Fig. 2, there is
some variability in the BER distribution across the subchannels.
The outermost channels exhibit worse BER distribution (in
the plot, we assume fk = (k − �M/2�)/T1). Further, as the
number of subcarriers increases from 9 to 129, the frequency
diversity gain diminishes as a result of subchannel band-
width compression.

In the bottom plots of Fig. 2, we assume time-variant
flat fading with Jakes’ Doppler spectrum having normal-
ized Doppler fDT = 0.01. The plots show that the BER
distribution is the same across the subchannels. Now, as
the number of subcarriers increases, the distribution of the
BER improves as the consequence of increased time-diversity
exploitation.

From Figs. 3–9, we consider the 3GPP-ITU channel models
with Jakes’ Doppler spectrum whose power delay profile is
shown in Table I. These channel models have been extensively
used to evaluate the performance of 3G systems. We consider
transmission bandwidths W = 1/T equal to 24.3 kHz,
270.83 kHz, and 3.84 MHz. They correspond, respectively,
to those of the IS-136, the Global System for Mobile
Communications/Enhanced Data rates for Global Evolution
(GSM/EDGE), and the Universal Mobile Telecommunications
System (UMTS). They are representative of a narrowband
system, a moderate narrowband system, and a wideband
system. The plots are obtained with the numerical method
described in Section III-A. The number of nodes w is set to 64,
and we choose c = 0.25, which yields excellent accuracy.
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Fig. 2. MFB BER complementary distribution as a function of the subcarrier index with ES/N0 = 10 dB and Gaussian subchannel pulse. Frequency-selective
Rayleigh fading channel with exponential power delay profile with delay spread τ0 (top plots). Flat Rayleigh fading channel with Jakes’ Doppler spectrum (bottom
plots).

Fig. 3. Average MFB BER with rect subchannel pulse in ITU channels with quasi-static Rayleigh fading. Solid curves correspond to a transmission bandwidth
W = 270.83 kHz, dashed curves to W = 3.84 MHz. Number of subchannels M = 1, 16, 128, ∞.

In Figs. 3–5, the channel is assumed quasi-static, i.e., fDT =
0. We plot the average MFB BER, i.e., averaged over the
subchannels, as a function of the SNR. We use rect subchannel
pulses in Fig. 3, sinc pulses in Fig. 4, and gauss pulses with

B = 0.33 in Fig. 5. This is to show how the subchannel pulse
and the number of subcarriers affect the frequency diversity
exploitation. As we increase the number of subcarriers, the
diversity gain decreases, and in the limit M → ∞, the average
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Fig. 4. Average MFB BER with sinc subchannel pulse in ITU channels with quasi-static Rayleigh fading. Solid curves correspond to a transmission bandwidth
W = 270.83 kHz, dashed curves to W = 3.84 MHz. Number of subchannels M = 1, 16, 128, ∞.

Fig. 5. Average MFB BER with gauss subchannel pulse in ITU channels with quasi-static Rayleigh fading. Solid curves correspond to a transmission bandwidth
W = 270.83 kHz, dashed curves to W = 3.84 MHz. Number of subchannels M = 1, 16, 128, ∞.

BER for all the cases that we consider is practically identical
to that of single carrier BPSK in flat fading. For M = 1 (sin-
gle carrier modulation), the frequency diversity exploitation is
maximized at the expense of receiver complexity. Further, note

that the rect pulse yields the best performance. This is because,
for a given number of subcarriers, it has a larger bandwidth than
the gauss and the sinc pulse. The performance with gauss pulses
is slightly better than with sinc pulses. Finally, the performance
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Fig. 6. MFB BER as a function of subcarrier index with gauss and rect subchannel pulse in ITU channels with quasi-static Rayleigh fading assuming a
transmission bandwidth W = 3.84 MHz and ES/N0 = 18 dB.

Fig. 7. Average MFB BER with gauss subchannel pulse in flat Rayleigh fading with Jakes’ Doppler spectrum and fD = 10, 100 Hz. Solid curves correspond
to a transmission bandwidth W = 270.83 kHz, dashed curves to W = 24.3 kHz. Number of subchannels M = 16, 64, 128. Curves labeled with no fading
correspond to BPSK in AWGN, curves labeled with static correspond to BPSK in quasi-static flat fading.

for the class B channels is in general better than for the class
A channels since class B channels have a larger delay spread.
It should be noted that from a detection complexity standpoint,
the gauss pulse is a good option because of its time/frequency
concentrated shape.

In Fig. 6, we plot the MFB BER as a function of the
subchannel index assuming an SNR of 18 dB, W = 3.84 MHz,
and M = 128 subcarriers. The subcarriers are chosen to be
fk = k/T1. As can be seen, there is some performance variation
across the subchannels although it is not deep. Again, with
rect pulses, the performance is better; however, as we increase
B to 0.7, the performance with gauss pulses improves since
this translates into a subchannel bandwidth expansion. As we
explained before, the variation of the BER performance across

subchannels is a function of the channel tap correlation. Since
the ADC filter is a Nyquist pulse, the T-spaced channel taps
exhibit some correlation only for values of T that are not
integer multiples of the time resolution of the ITU profiles, i.e.,
Tc = 10 ns.

In Figs. 7 and 8, we consider a time-variant flat-fading
channel. This is to illustrate the effect of Doppler as a function
of the subchannel pulse and the number of subcarriers. As a
reference, we also report the BER of BPSK modulation in
AWGN (no fading) and in quasi-static Rayleigh fading.

In Fig. 7, we deploy a Gaussian pulse with B = 0.33 and
assume transmission bandwidths of W = 24.3 kHz and W =
270.83 kHz. In general, performance improves as the number of
subcarriers increases since this corresponds to a pulse duration
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Fig. 8. Average BER in flat Rayleigh fading with Jakes’ Doppler spectrum and fD = 100 Hz. OFDM with conventional detection and MFB for rect pulse,
gauss pulse, and sinc pulse. Solid curves correspond to a transmission bandwidth W = 270.83 kHz, dashed curves to W = 24.3 kHz. Number of subchannels
M = 16, 64, 128. Curves labeled with no fading correspond to BPSK in AWGN, while curves labeled with static correspond to BPSK in flat fading.

Fig. 9. Average MFB BER with gauss subchannel pulse in time–frequency selective channel: Vehicular A ITU channel with fading having Jakes’ Doppler
spectrum with fD = 100, ∞ Hz. Transmission bandwidth W = 270.83 kHz. Curves labeled with no fading correspond to BPSK in AWGN, while curves
labeled with static correspond to BPSK in flat fading.

TABLE I
3GPP-ITU POWER DELAY CHANNEL PROFILES
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expansion. Further, the time diversity effect is more evident in
a narrowband context, i.e., with W = 24.3 kHz, but it is not
negligible even with W = 270.83 kHz. It should be noted that
for nontime-sensitive applications, we could combine multitone
modulation with interleaving. That is, we could deploy symbol
interleaving at the output of the multitone modulator. This
would have the effect of decorrelating the channel. Thus, the
multitone transform would yield higher time-diversity gains. If
we look at the curves of Fig. 7 that correspond to a Doppler
tending to infinity (ergodic channel), we can see that the
BER approaches that of BPSK in AWGN (curves labeled with
no fading).

In Fig. 8, we plot the performance of OFDM with conven-
tional detection and the MFB performance with rect, gauss, and
sinc pulses. No cyclic prefix is added here since flat fading is
considered. OFDM with conventional detection exhibits high
error floors that increase as the number of subcarriers increases.
The best performance is achieved with sinc pulses. Gaussian
pulses with B = 0.1 exhibit near sinc pulse performance.

Finally, in Fig. 9, we evaluate the performance for a joint
time–frequency selective channel. We use a Gaussian sub-
channel pulse with W = 270.83 kHz and with the ITU ve-
hicular A profile. If we compare the results in Fig. 9 with
those in Figs. 5 and 7, we see that with fD = 100 Hz there
is some joint frequency and temporal diversity gain that is
available by increasing the number of carriers to 16. However,
this flattens out with 64 carriers since we start losing the
frequency diversity gain. If the channel is fully temporally
uncorrelated, then we can quickly approach the performance
in AWGN (with no fading) by increasing the number of sub-
carriers to 64. In other words, we are better off exploiting
the temporal diversity by increasing the number of subcar-
riers rather than the frequency diversity by deploying single
carrier modulation.

VI. CONCLUSION

In this paper, we have studied the performance limits for
FMT over time-variant frequency-selective fading channels
through the analysis of the matched filter bound. We have
shown that the time and frequency selectivity of the channel
introduces ICI and ISI components that need to be counteracted
with some form of equalization. We have reviewed the optimal
ML detector and have shown that its complexity (related to the
number of states in the Viterbi algorithm) is a function of the
channel and the FMT modulator design parameters (prototype
pulse and number of tones). To minimize the amount of ICI
and ISI, it is desirable to use time- and frequency-concentrated
pulses, e.g., Gaussian-shaped pulses. In the absence of ICI, the
detector simplifies into a bank of ML detectors that operate
independently over each subchannel. In quasi-static fading, an
increase in the number of tones translates into a lower ISI
exhibited by each subchannel. As a result, the exponential
decrease in the number of states of each Viterbi detector ex-
ceeds the linear increase in the number of required detectors,
which can yield a lower overall complexity. In fast time-variant
fading, an increase in the number of tones can lead to a higher
detection complexity. Thus, in general, the number of tones and

prototype pulse is chosen to tradeoff between complexity and
performance. Further, simplified detection algorithms can be
developed. A possible approach is based on the deployment
of a reduced state Viterbi algorithm combined with iterative
detection that performs sequential interference cancellation
[21]–[24]. Other simplified equalization schemes are described
in [3].

With optimal detection, both the channel frequency and the
temporal diversity can be exploited. To understand how the
FMT modulator design parameters (prototype pulse and num-
ber of tones) impact performance, we have studied the matched
filter bound error rate. The MFB yields a lower bound on the
BER. It is a useful tool that allows for an analytical treatment of
the diversity effect on performance as a function of the channel
time and frequency selectivity [1], [8], [11], [13]. The MFB
analysis reveals that multitone modulation can be interpreted as
a diversity transform. In general, for a fixed transmission rate,
an increase in the number of subcarriers translates into dimin-
ished frequency diversity gains, but into augmented time di-
versity gains. Therefore, from a pure performance perspective,
optimal detection of multitone modulation allows for the di-
versity exploitation of the channel temporal selectivity that
is, in general, exhibited in narrowband transmissions. On the
contrary, wideband channels offer frequency selectivity whose
diversity exploitation can be maximized with optimal detection
of single carrier modulation. For a fixed number of tones,
the prototype pulse shape also has an impact on performance.
For instance, narrow bandwidth subchannel pulses yield bet-
ter performance in time-selective fading than in frequency-
selective fading. We note that the above conclusions are based
on the analysis of the MFB performance of optimal detection.
Further studies are required to characterize the performance of
simplified/suboptimal equalization algorithms. Several simula-
tion results for the more general multiuser system scenario in
[21]–[24], [26] show that near MFB performance is achievable
by deploying multitone detection schemes that are based on
iterative interference cancellation techniques.

We have also briefly reviewed the performance of uncoded
DMT modulation with cyclic prefix (OFDM). The conventional
detector has an unbeatable simplicity but is suboptimal: it is
unable to exploit the frequency diversity and cope with
fast time-variant channels. It should be noted that sharp
performance improvements can be obtained with channel
coding across the OFDM subchannels [27], [30]. Channel
coding is expected to be beneficial to FMT as well. The effect
of coding can be studied by evaluating the squared distance
(26) and the PEP (27) for error events of length larger than
one symbol that are associated with code word pairs. Further,
if bit-interleaved codes are used, we can treat the FMT system
as a serially concatenated coded system and run decoding in a
turbo-like fashion via iterative FMT equalization and channel
decoding as described in [24] and [25].

APPENDIX A
DISTRIBUTION OF NORMAL QUADRATIC FORMS

Let us consider the quadratic form Λ = αHGα, where α
is a vector of circularly complex Gaussian random variables
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with mean m and covariance K = R − mmH while G is an
Hermitian matrix of size N . Let CCH = K be the Cholesky
factorization of K (assumed positive definite) and U be
the unitary eigenvector matrix that diagonalizes CHGC, i.e.,
Γ = UCHGCU−1 = diag{λ1, . . . , λN} [9], [16]. Then, we
can write Λ = βHUCHGCU−1β = βHΓβ =

∑N
i=1 λi|βi|2,

where β = UC−1α is a vector of independent Gaussian ran-
dom variables with unit variance and mean mβ = UC−1m.

It is interesting to note that the eigenvalues of CHGC are the
same as the eigenvalues of KG. In fact, if CHGCνk = λkνk,
then CCHGCνk = λkCνk and finally KGCνk = λkCνk,
where Cνk is the kth eigenvector associated with the eigen-
value λk of KG. Therefore, we just need to determine the
eigenvalues of KG without computing the Cholesky factoriza-
tion of K.

Herein, we consider the case of central and positive semidefi-
nite quadratic form, i.e., m = 0, K = R, and λk ≥ 0. In such a
case, the pdf of Λ can be found via the partial fraction expansion
of the characteristic function [5], [8], [15]. Assuming N ′ dis-
tinct eigenvalues each with multiplicity mk, we can rewrite Λ =∑N ′

i=1

∑mi

k=1 λi|βi,k|2 =
∑N ′

i=1 γi, with γi = λi

∑mi

k=1 |βi,k|2
being independent and Erlang-distributed random variables
with order mi and mean λimi. Their characteristic function
reads ψγ(a) = E[ejγa] = (1 − jλia)−mi [14]. Therefore, the

characteristic function of Λ is ψΛ(b) =
∏N ′

i=1(1 − jλib)−mi=∑N ′

i=1

∑mi

k=1 Ai,k(1 − jλib)−k, where we have used the partial
fraction expansion with coefficients given by (34). Now, the pdf
of Λ is obtained from the characteristic function as pΛ(a) =
1/(2π)

∫∞
−∞ ψΛ(b)e−jabdb, which yields (32), while the cu-

mulative distribution function (cdf) as FΛ(a) =
∫ a

0 pΛ(b)db,
which yields (33).

APPENDIX B
GAUSS–CHEBYSHEV NUMERICAL

QUADRATURE METHOD

In this appendix, we describe a numerical method to evaluate
the average probability of error as reported in (38) (see also
[19]). Let us define the random variable ∆ = ξ − ν2, where
ν is zero-mean unit-variance Gaussian and ξ is a nonnegative
random variable independent of ν. Then, we can write

E
[
Q(

√
ξ)
]

= P [ν >
√

ξ] =
1
2
P [ν2 > ξ] =

1
2
P [∆ < 0].

(47)

Note that the result in (47) differs by a factor 1/2 from the one
erroneously reported in [19]. Then, if Φ∆(s) is the moment gen-
erating function of ∆, through the Laplace inversion formula
we obtain its pdf p∆(a) = 1/(2πj)

∫ c+j∞
c−j∞ Φ∆(s)e−asds, with

c in the region of convergence of Φ∆(s). Consequently

E
[
Q(

√
ξ)
]

=
1
2
P [∆ < 0] =

1
4πj

c+j∞∫
c−j∞

Φ∆(s)
s

ds. (48)

With the change of variable s = c + jc
√

1 − x2/x, the integral
in (48) can be manipulated to obtain

P [∆ < 0] =
1
2π

1∫
−1

[
Re

{
Φ∆

(
c + jc

√
1 − x2

x

)}

+
√

1 − x2

x
Im

{
Φ∆

(
c + jc

√
1 − x2

x

)}]
dx√

1 − x2
. (49)

If we use the Gauss–Chebyshev numerical integration formula∫ 1

−1 f(x)/
√

1 − x2dx ∼= π/w
∑w

n=1 f(cos((2n − 1)π/2/w)),
we obtain (38).

We can proceed by noting that the moment generating
function that is required in (38) can be written as Φ∆(s) =
Φξ(s)(1 − 2s)−1/2. Further, in our context, we want to evaluate
Pe,MFB(k) = E[Q(

√
ξ)] with ξ from (29)

ξ =
d2
MFB(k, l)

2N0
=

De

2N0
αHWH

k GWkα. (50)

The moment generating function Φξ(s) = E[e−sξ] can be com-
puted in closed form. Since α is Gaussian with mean m and co-
variance matrix K = R − mmH, following [16, Appendix B],
we obtain

Φξ(s) =
e−smHWH

k
GWk( 2N0

De
I+sKWH

k
GWk)−1

m∣∣∣I + s De

2N0
KWH

k GWk

∣∣∣
m=0⇒ =

∣∣∣∣I + s
De

2N0
RWH

k GWk

∣∣∣∣−1

=
∏

i

(
1 + s

λi

2N0

)−1

(51)

where I denotes the identity matrix and λi are the eigenvalues
of DeRWH

k GWk. Thus, the method is easily applicable to the
case of α having nonzero mean, i.e., Ricean fading. For the
Rayleigh fading case, setting m = 0, s = c(1 + jτn) and using
(38) yields the final result.
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