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Abstract—The characteristics of the power line communication
(PLC) channel are difficult to model due to the heterogeneity
of the networks and the lack of common wiring practices. To
get the full variability of the PLC channel, random channel
generators are of great importance for the design and testing
of communication algorithms.

In this respect, we propose a random channel generator that
is based on the top-down approach. Basically, we describe the
multipath propagation and the coupling effects with an analytical
model. We introduce the variability into a restricted set of
parameters, and, finally, we fit the model to a set of measured
channels. The proposed model enables a closed-form description
of both the mean path loss profile and the statistical correlation
function of the channel frequency response.

As an example of application, we apply the procedure to a
set of in-home measured channels in the band 2-100 MHz whose
statistics is available in the literature. The measured channels are
divided into nine classes according to their channel capacity. We
provide the parameters for the random generation of channels
for all nine classes, and we show that the results are consistent
with the experimental ones.

Finally, we merge the classes to capture the whole hetero-
geneity of in-home PLC channels. In detail, we introduce the
class occurrence probability, and we present a random channel
generator that targets the ensemble of all nine classes. The
statistics of the composite set of channels is also studied,and it is
compared to the results of experimental measurement campaigns
in the literature.

Index Terms—Power line communications, channel modeling,
top-down approach, random channel generation.

I. I NTRODUCTION

No-new-wires is the essence of power line communication
(PLC). PLC conveys information through the existent power
delivery infrastructure and it is a very attractive solution for
providing a connection to the end user. Several application
scenarios can be found. Among these, the medium voltage,
the outdoor low-voltage, and the in-home scenarios have been
the subject of high research activity during the last decade. In
this work, we focus on the in-home broadband scenario.

In-home PLC is a candidate to overcome the range lim-
itations of wireless networks, ensuring communications at
200 Mbps in the 2-30 MHz frequency band with available
commercial devices [1]. To further increase the data rate, the
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signalling bandwidth can be extended to 2-100 MHz, as it is
done, for instance, in the next-generation standard G.hn [2].
In this respect, a broadband channel model in the extended
frequency range is important.

A large effort has been dedicated to model the power line
channel, but no reference model has been provided yet. The
main approaches are two. The first is referred to as bottom-up.
Basically, the bottom-up approach models the channel transfer
function using transmission line (TL) theory. It requires the
perfect knowledge of the network topology in terms of cable
lengths, loads, and so on. In general, the network elements are
described with the ABCD or the scattering parameter matrices
[3] - [4]. Alternative solutions were presented in [5] and [6].
The first solves a complex system and it finds the current and
the voltage of every node of the network. The latter is a scalar
version of the ABCD matrix method.

The bottom-up approach admits a statistical extension. Ran-
dom channel generation algorithms were presented in [7] -
[8] for the frequency range up to 30 MHz. Furthermore, the
bottom-up approach allows modeling the time-variant nature
of the PLC channel. The random generation of time-variant
PLC channels was addressed in [9]. Finally, the bottom-up
approach can be extended to multiple-input multiple-output
(MIMO) PLC. In fact, in-home PLC deploys three conductors.
With three conductors, two circuits are available, and thus
MIMO communications are possible. MIMO PLC models
were described in [10] and [11], and they represent the natural
extension of [5] and [6], respectively.

The second modeling approach is referred to as top-down.
With this approach, the channel response is obtained by fitting
a certain parametric function with data coming from the
measurements. The first attempt was presented in [12]. Later,
in [13], the channel frequency response was modeled taking
into account the multipath nature of the signal propagationand
the losses of the cables. In [14], the model was extended in
statistical terms and a top-down random channel generator was
provided. Some other top-down random channel generation
algorithms were presented in the literature. In [15], a statistical
model for the PLC channel impulse response was derived from
the statistics of the delay spread and the attenuation of theset
of measured channels that was presented in [16]. Conversely,
the channel generation in the frequency domain was addressed
in [17]. Basically, the method generates channel responses
that show the same distribution of peaks and notches of the
measured channels. The work targets the extended frequency
range up to 100 MHz. The main disadvantage of the method
is that the position and the height of the peaks and notches
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is strongly modified by the interpolation in frequency of the
channel transfer function, as it was pointed out in [18].

In this paper, we refine the model presented in [14], and we
propose a general fitting procedure that enables the model to
reproduce the statistics of a given set of measured channels.
We target channel frequency responses in the 2-100 MHz
frequency band. We show that the model allows obtaining
the analytical expression of the mean path loss profile and
the statistical correlation function of the generated channels.
These are important functions that we propose to exploit in
the fitting process.

As an example of application of the proposed method, we
consider the results of the measurement campaign in [17]
where the measured channels were classified into nine classes
according to their capacity. We fit the model to the measures,
we study the statistics of the generated channels, and we show
that it is in good agreement with the experimental one. In [19],
some preliminary results were reported for a restricted subset
of channel classes. Herein, we extend the validity of these
results. We derive the closed form expression of the statistical
correlation function of the channel frequency response. From
it, we obtain the mean path loss profile and the coherence band.
We detail the fitting procedure, and we provide the parameters
of the model for all channel classes that were presented in
[17]. We study the statistics of the generated channels and,in
particular, the distribution of the delay spread and the average
channel gain. As a final result, we show their consistency
with experimental results. Furthermore, we propose to use a
composition channel where the frequency response realizations
are drawn from the nine classes with the class occurrence
probabilities that were reported in [17]. This allows to capture
the full in-home PLC channel variability.

The remainder of the paper is organized as follows. In
Section II, we deal with the model. Firstly, we recall the
multipath propagation model. Then, we extend it in statistical
terms. In Section III, we describe the fitting procedure and
the application to the results of the measurement campaign
in [17]. In Section IV, we provide the statistical analysis of
the generated channels and we compare it with experimental
results. Finally, some conclusions follow.

II. M ODEL DESCRIPTION

We model the channel response in the frequency domain.
Firstly, we recall the basis of the multipath propagation
model. Then, we propose a statistical extension that allows
generating random PLC channel responses whose statistics is
in agreement with experimental results.

A. Deterministic Propagation Model

We aim to describe the multipath propagation of the signal
in power line networks. We focus on the in-home scenario.
The in-home wiring is made by distinct conductors. Two of
these, namely, the phase and the neutral, deliver the electricity
and they are also deployed for communication purposes. The
bare conductors are individually insulated and they can be
either enclosed in the same dielectric cap or nearby placed
inside small plastic raceways. In both cases, the transversal

dimension of the overall cable structure is small if compared
to the transmission signal wavelength in the lower GHz range.
Furthermore, the dielectric can be approximated as uniform,
and the wires as ideal conductors. It follows that the transverse
electromagnetic (TEM) or quasi-TEM mode assumption is
valid and thus the electrical quantities along the line can be
handled as scalars.

In-home power delivery networks are characterized by the
presence of a multitude of branches and termination outlets.
The electrical appliances are connected to the termination
outlets. In general, they show an input impedance that is
different from the characteristic impedance of the cables,and
thus they are unmatched terminations. Note that open outlets,
i.e., plugs where no loads are connected, are unmatched termi-
nations as well. Cable junctions and unmatched terminations
can be modelled as line discontinuities. On a line discontinuity,
the signal is partially reflected toward the transmitter andit
is partially transmitted over the discontinuity. The reflection
and transmission coefficients account for these effects. We
denote them withρ(f) andτ(f), respectively, wheref is the
frequency.

In the presence of multiple line discontinuities, infinite
copies of the transmitted signal propagate toward the receiver.
Each copy follows a different path with its own reflection
effects. We denote the phasor vector of the signal at the
transmitter and the receiver port withVtx(f) and Vrx(f),
respectively. The signal at the receiver port can be written
as [20]

Vrx(f) =

N∑

i=1

(
Ri∏

m=1

ρm(f)

Ti∏

n=1

τn(f)

)

︸ ︷︷ ︸

pi(f)

e−γ(f)ℓiVtx(f) , (1)

whereN is the number of paths, whileRi, Ti, and ℓi are
the number of reflection and transmission coefficients and the
length of thei-th path, respectively. The exponential factor
accounts for the propagation effects. We denote withγ(f) the
propagation constant. It is in general complex, namely,γ(f) =
α(f)+ jβ(f), and it is a function of the cable characteristics.
We assume all the lines to have the same propagation constant.
The real component, i.e.,α(f), is the attenuation constant and
it accounts for the losses introduced by the non ideal lines.The
imaginary componentβ(f) is the phase constant. We model
the attenuation and the phase constant as [13]

α(f) = a0 + a1f
K (2)

β(f) = 2πf/ν, (3)

wherea0, a1 andK are a function of the cable characteristics,
ν = c/εr is the propagation speed of light in the cable
structure,c is the speed of light in the vacuum, andεr is
the relative dielectric constant of the insulator that surrounds
the conductors. In the following, we choose a value for the
relative dielectric constant that takes into account for the non-
uniform dielectric given by the combination of air and plastic.
Strictly, we assumeεr = 1.5.

We refer to the product of the reflection and the transmission
coefficients as path gain. We denote the path gain of thei-th
path with pi(f). In general, the path gains are complex and
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smaller than one in absolute value. However, for the cases of
practical interest,pi(f) can be approximated as a real-valued
coefficient [13]. Further, we propose to make the frequency
dependence of the path gains explicit as follows

pi(f) = gi + cif
K2 , (4)

whereK2 is the same for all the paths. The model in (4)
has been firstly presented in [21], and it can be explained as
follows. In-home networks are fed by one or more phases,
namely up to three. The phases are not electrically connected.
When more than one phase is present, the outlets do not
necessarily share the same phase. Thus, they are connected
to different electrical circuits. When we transmit and receive
on different circuits, coupling effects ensure the propagation
of the transmitted signal toward the receiver. In the presence of
coupling effects, the channel frequency response shows a con-
cave behavior. In detail, it is strongly attenuated in the lower
frequency range because it lacks of electrical continuity,while
in the higher frequency range it is attenuated because of line
losses. From measurements, we noted that concave frequency
responses can also be found in single phase networks where
the transmitter or the receiver outlet are partially damaged. As
an example, in Fig. 1, we show a measured frequency response
that exhibits a typical concave behavior, and its best quadratic
polynomial fit.

We neglect the paths that are characterized by a small path
gain and thus we limit (1) to the finite number of pathsNp.
Now, the complex channel frequency response is given by the
ratio between the phasor of the received signal and the phasor
of the transmitted signal, i.e.,H(f) = Vrx(f)/Vtx(f). From
(1), it follows

H(f) = A

Np∑

i=1

(
gi + cif

K2

)
e−(a0+a1f

K)ℓie−j2πfℓi/ν , (5)

whereA is a constant coefficient that allows for attenuation
adjustments, and0 ≤ B1 ≤ f ≤ B2 . In the following, we
consider the frequency response in (5), and thus we no longer
use the phasor representation.

Now, we focus on the channel impulse response. We define
the complex impulse response of the channel as the inverse
Fourier transform of the frequency response in (5), i.e.,h(t) =
F−1 [H(f)]. Under the assumption ofci = 0 andK = 1, it
is possible to obtain a closed form expression of the complex
channel impulse response, that reads

h(t) = A

Np∑

i=1

2∑

k=1

gie
−a0ℓi (−1)k−1e(jt−(

a1

2π
+ j

ν )ℓi)ωk

a1ℓi + j2π
(
ℓi
ν − t

) , (6)

whereωk = 2πBk. When the assumptions are not valid, the
complex impulse response of the channel can be computed as
the inverse discrete Fourier transform (IDFT) of the channel
frequency response.

Finally, the real impulse response of the channel is given
by twice the real part of the complex impulse response, i.e.,
hr(t) = 2Re {h(t)}.
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Fig. 1. Measure and quadratic polynomial fit of a PLC channel frequency
response that shows a concave behavior. The measurement wasmade in the
university laboratories.

B. Proposed Statistical Extension of the Model

In this work, we focus on the in-home scenario, and we
propose to generate random channel responses starting from
(5). We fix the value of the parametersA, a0, a1, K, K2 and
ν, and we modelgi, ci, ℓi andNp as random variables. We
obtain the values of the constants by fitting the measures as
explained in Section III, and we choose the distribution of the
random variables as follows.

Firstly, we focus on the path gain coefficientsgi and ci.
The path gains are given by the product of the reflection
and transmission coefficients. We assume the latter to be
uniformly distributed random variables in[−1, 1]. Therefore,
we can model them as the product of a random sign flipξ
and a uniformly distributed random variableu ∈ [0, 1]. We
note that the null reflection and transmission coefficients do
not contribute to the sum in (5). Now, since the statistical
distribution of the product of a large number of uniform
random variables approaches log-normality, we model bothgi
andci as log-normally distributed random variables multiplied
by random sign flips. Differently, in [21],gi and ci were
modeled as uniformly distributed random variables in[−1, 1].
We assumeci and gi to be independent, and we point out
thatgi andci have zero mean. We denote their variances with
σ2
g andσ2

c = b20σ
2
g , respectively. Finally, without any loss of

generality, we setσ2
g = 1. Further attenuation adjustments

can be obtained by properly setting the value of the constant
coefficientA.

We model the path lengths as uniformly distributed random
variables in[0, L], whereL is constant. Finally, we propose to
model the number of pathsNp as a Poisson random variable
with meanΛL. The number of paths in (5) is always greater
than 0. Therefore, the probability mass function ofNp reads

Pr (Np = k) =
e−ΛL

1− e−ΛL

(ΛL)
k

k!
, (7)

wherek ≥ 1. The paths can be interpreted as the arrivals of
a Poisson process with intensityΛ (paths/m). In fact, the



IEEE TRANSACTIONS ON POWER DELIVERY,SUBMITTED ON JULY 29, 2011, REVISED ON DECEMBER 30, 2011, ACCEPTED ON APRIL 15, 2012 4

arrivals of a Poisson process are uniformly distributed in a
finite interval, when their number is set. In the following, we
assumeΛ = 0.2.

This model is able to reproduce the reality with accurate pre-
cision, as it will be shown in Section IV. However, we remark
that other distributions may be suitable forNp, depending on
the set of measures that have to be fitted.

III. F ITTING THE MODEL TO THE MEASURES

We herein describe a procedure to obtain the model pa-
rameters that fit the measured channels. The idea is to target
the average path loss and the coherence bandwidth of a set
of measured channels. We compute the coherence bandwidth
from the statistical frequency correlation function that we
describe below. As an application example, in this work, we
fit the model to the results of the measurement campaign in
[17].

A. Statistical Frequency Correlation Function and Path Loss

We define the statistical frequency correlation function as
follows

φ(f, λ) = E [H(f + λ)H∗(f)] , (8)

whereE [·] denotes the expectation w.r.t. the random variables,
and the superscript{·}∗ denotes the complex conjugate. From
(5), we obtain (see the Appendix)

φ(f, λ) =
(

1 + b20f
K2 (f + λ)

K2

) |A|2 Λ

1− e−ΛL

×
1− e−(2a0+a1(fK+(f+λ)K)+j2πλ/ν)L

2a0 + a1

(

fK + (f + λ)
K
)

+ j2πλ/ν
.

(9)

Whenλ = 0, (9) corresponds to the mean path loss profile
of the generated channels, namely,P (f) = φ(f, 0), that reads

P (f) =
|A|2Λ

(
1 + b20f

2K2

) (

1− e−2(a0+a1f
K)L

)

2 (1− e−ΛL) (a0 + a1fK)
. (10)

B. Fitting Procedure

We aim to fit the model in (5) to a set of measured
channels. We proceed as follows. We find the values of the
parameters and the distributions of the random variables in(5)
that minimize the mean square error between the average path
loss profile of the measured channels and the analytical profile
in (10). We constrain the minimization to target the statistical
coherence bandwidth of the measured channels. We define the
statistical coherence bandwidth as follows. First, we integrate
the statistical correlation function in (9) to obtain

φ(λ) =

∫ B2

B1

φ(f, λ)df. (11)

Then, we refer to the statistical coherence bandwidth at
level ϕ, namely, B̂(ϕ)

C , as the frequencyλϕ beyond which
the absolute value ofφ falls to a value that isϕ times its
maximum. Strictly,

B̂
(ϕ)
C = λϕ such that

∣
∣φ(λϕ)

∣
∣ = ϕ

∣
∣φ(0)

∣
∣ . (12)
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Fig. 2. Target path loss profiles (dashed line with markers and explicit
formulas) and profiles from fitting (continuous line) for channel classes 1 to
9.

Now, the statistical coherence bandwidth is not always
reported in experimental works. Typically, the main focus is on
the coherence bandwidthB(ϕ)

C that is defined similarly to (12),
but substitutingφ(λ) with the following correlation function

R(λ) =

∫ B2

B1

H(f + λ)H∗(f)df, (13)

whereH(f) = 0 outside the frequency range[B1, B2]. Note
that R(λ) and φ(λ) are different. The former refers to a
specific channelH(f), the latter is the result of expectation.

When the statistical coherence bandwidth of the measured
channels is not available, we propose to fit the model so that
the statistical coherence bandwidth has a value equal to the
average value of the coherence bandwidth of the measured
channels that we denote withB

(ϕ)

C . The proposed approach

is valid becauseB
(ϕ)

C and the statistical coherence bandwidth
B̂

(ϕ)
C of the generated channels are very close quantities, as it

will be shown in Section IV.

C. Target Measurement Campaign

In the literature, several works report the results of different
measurement campaigns [18], [22]. Most of these focus on
the characterization of the PLC channel in terms of average
channel gain and delay spread. To fit the model, we need the
average path loss profile and the average coherence bandwidth.
In [17], [23], these information are provided. Therefore, we
target the database herein presented. Basically, the work in
[17], [23] addresses the in-home PLC scenario in France.
The campaign focuses on the 2 - 100 MHz frequency band.
A set of 144 channels was acquired in different locations,
and the channels were classified into nine channel classes
according to their capacity. This classification is useful because
it allows inferring the statistics of groups of channels that show
a similar frequency behavior. For each class, the average path
loss profile, delay spread and coherence bandwidth are given.
Furthermore, an hyperbolic relation between the average delay
spread and coherence bandwidth is provided.
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Fig. 3. Average phase of classes 1 (bottom) to 9 (top).

IV. N UMERICAL RESULTS

We fit the model to the nine channel classes in [17]. We
focus on the 2-100 MHz frequency range, with a frequency
resolution of 24 kHz. In the time domain, we sample the real
impulse response with a period ofTc = 5 ns. We report the
parameter values in Tables I and II. Furthermore, following
the fitting procedure of Section III-B, we refine the values
provided in [19] for classes 1, 5, and 9.

A. Path Loss and Phase

We firstly study the path loss of the generated channels.
For each channel class, 500 realizations are considered. In
Fig. 2, we plot the mean path loss profile obtained from the
measures [17], and the analytical path loss given by (10). The
closed form expression of the measured average path loss is
provided in [17] and it is also reported in Fig. 2. It has been
obtained by fitting with sinusoidal or exponential functions
the average path loss of the measured channels. In all cases,
a very good agreement between the analytical (of our model)
and the measured path loss can be observed. It validates the
results of the fitting procedure.

Now, we consider the average phase. We compute it as
the average phase of the channel frequency response of the
generated channels. We report the average phase of the nine
classes in Fig. 3. In most cases, the average phase is well fitted
by a linear function, as reported in [17]. Only classes 2 and
3 show a slight quadratic dependency of the phase versus the
frequency.

Finally, in Fig. 4, we show an example of channel realization
from class 2 and 8, both in amplitude and phase. The average
profiles are also shown.

B. Statistics of the Channel Metrics

We firstly focus on the root-mean-square (RMS) delay
spread. We compute the power delay profile from the real
impulse response as

P(t) =
|hr (t)|

2

∫
∞

0 τ |hr (τ)|
2
dτ

. (14)

−100

−80

−60

−40

−20

0

(a)

P
at

h 
Lo

ss
 (

dB
)

0 20 40 60 80 100
−1000

−800

−600

−400

−200

0

P
ha

se
 (

ra
d)

(b) Frequency (MHz)

class 8

class 2

class 8

class 2

Fig. 4. Illustrative example of one channel realization from classes 2 and 8.
(a) amplitude, and (b) phase. The average profile in amplitude and phase is
also shown for both classes (lines with markers).

Then, the delay spread reads

στ =

√
∫

∞

0

(t−mτ )
2
P (t) dt [s], (15)

wheremτ =
∫
∞

0 tP (t) dt is the mean delay. We compute
the channel impulse response by means of IDFT, and we
truncate it to 5.56 µs to reduce the side-lobe effect. The
truncation introduces a negligible energy loss. Furthermore,
it is consistent with the cyclic-prefix length of HomePlug AV
PLC system specifications [1]. A raised cosine window with
a flat portion in the 2-100 MHz frequency band is applied.

In Table III, we provide the average delay spread of the nine

TABLE I
COUPLING PARAMETER VALUES

class b2
0

K2

1 1.4354e-6 0.403919

2-8 0 -

9 2.28955e-6 0.341468

TABLE II
ATTENUATION AND MULTIPATH PARAMETER VALUES

(σ2
g = 1, Λ = 0.2 paths/m, ν = 2e8 m/s)

class A
a0 a1

K
L

(

m−1
) (

s ·m−1
)

(m)

1 1.3022e-5 -0.00691505 1.15712e-026 2.97983 540

2 2.8269e-4 -0.00888846 7.55014e-006 0.408174 550

3 6.7170e-4 -0.0152108 3.67885e-005 0.347786 320

4 6.3972e-4 -0.0142857 2.5219e-005 0.348188 350

5 8.3880e-4 -0.0141565 1.67181e-005 0.363295 350

6 9.5814e-4 -0.00797313 2.285e-018 1.92048 410

7 4.5819e-3 -0.0132538 1.12949e-018 2.00313 200

8 1.0964e-2 -0.0185199 9.65172e-018 1.87202 130

9 2.4856e-3 -0.0435673 2.02324e-020 2.2179 110
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Fig. 5. (a) quantile-quantile plot of the logarithmic delayspread versus
the standard normal quantiles, and (b) quantile-quantile plot of the average
channel gain versus the standard normal quantiles. In both cases, results are
provided for two representative classes.

channel classes. We denote it withστ . We compare the values
obtained from the simulations (3rd column) to the ones given
by the measures (2nd column). The measured values were pre-
sented in [23], and we report them here for the sake of clarity.
Simulations are very close to the measures. Furthermore, we
study the distribution of the delay spread of the generated
channels. We perform the Lilliefors test to the logarithm
version of the delay spread, i.e.,σlog = log10 (στ/1µs). The
delay spread of class 1, 5 and 9 is log-normally distributed.For
other classes, the Lilliefors does not confirm the log-normality
of στ , though the log-normal distribution is still the best fit.
In Fig. 5(a), we show the quantile-quantile plot of the delay
spread versus the quantiles of the best log-normal fit. We focus
on classes 4 and 9. The first is representative of classes that
show a log-normal delay spread. The second, is representative
of the complementary set of classes. The log-normal behavior
holds true if the samples lie on the line. We note that the
main deviation from the log-normality of class 4 is due to the
samples of the lower tails, i.e., the smaller values of the delay
spread. From the analysis of experimental data, e.g., [22],it

TABLE III
RMS DELAY SPREAD(µs) AND ACG (dB)

class
Measured [23] Simulated

στ στ G

1 0.31 0.399061 -53.8721

2 0.517 0.601574 -44.8233

3 0.456 0.384516 -41.4305

4 0.297 0.344387 -36.0103

5 0.322 0.321122 -31.4896

6 0.263 0.33135 -25.2677

7 0.149 0.190027 -19.4345

8 0.0999 0.127396 -14.8919

9 0.0417 0.0643916 -10.0729
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Fig. 6. Scatter plot of the RMS delay spread versus the average channel
gain of the composition channel. The robust fit is also shown.

has been shown that also the RMS delay spread of measured
channels is not strictly log-normally distributed, although the
log-normal fit is the best one. Thus, our simulation results are
consistent with the previous experimental work.

As for the delay spread, we address the statistics of the
average channel gain (ACG). We focus on thedB version of
the ACG, and we define it as follows

G = 10 log10

(

1

B2 −B1

∫ B2

B1

|H(f)|
2
df

)

[dB] . (16)

In Table III, we report the average value of the ACG of
the nine classes (4th column). We denote it withG. The
attenuation increases toward class 1. Furthermore, exceptfor
classes 2, 4, and 8,G is normally distributed, as confirmed by
the Lilliefors test. In Fig. 5(b), we provide the quantile-quantile
plot of G in dB versus the standard normal quantiles. Again,
we limit the analysis to two representative classes, i.e., class 3
and 8. Few outliers are responsible of deviation from normality
of theG samples of class 8. However, the normal distribution
is the best fit for the ACG of the generated channels. This
result is in agreement with the experimental results in [18].

TABLE IV
AVERAGE AND STATISTICAL COHERENCE BANDWIDTH(KHZ)

class
Target [23] Simulated

B
0.9
C B̂0.9

C B
0.9
C

1 190 191.433 187.796

2 106 119.646 100.168

3 160 167.504 162.718

4 190 191.433 193.922

5 210 215.363 212.252

6 220 239.292 237.521

7 370 382.867 418.282

8 550 550.371 677.148

9 1220 1268.25 1662.89
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Fig. 7. Scatter plot of the coherence bandwidth versus the RMS delay spread
of the composition channel. The best hyperbolic fit is also shown.

Finally, we study the coherence bandwidth. In Table IV, we
report the statistical and the average coherence bandwidthof
the generated channels (3rd and 4th column, respectively),and
the average coherence bandwidth of the measured channels
(2nd column). The measured values are given in [23]. We
note that the three values are very similar. Thus, the use of
the average coherence bandwidth in the fitting procedure is
justified.

C. Composition Channel

With the proposed channel generator, channels of a given
class can be randomly drawn using a proper set of parameters.
To generate channels that capture the overall in-home channel
variability, we can randomly pick channels from all classes
according to a certain occurrence probability. We refer to the
resulting channel as composition channel.

To study the statistics of this composition channel, we
generate 500 channels picked from different classes according
to the class occurrence probability reported in [17], i.e.,
Po ∈ {0.0349 0.1678 0.1818 0.1188 0.1188 0.1258 0.0979
0.0769 0.0769} for classes 1 to 9, respectively. The class
occurence probability have been obtained from the experimen-
tal evidence in France. We focus on the ACG, RMS delay
spread, coherence bandwidth and their relation. The results
are summarized in Figs. 6, and 7.

In Fig. 6, we provide the relation between the ACG and the
delay spread. The robust regression fit is also shown. We have
found that the delay spread and the ACG are negatively related
and the slope of the robust regression is−0.011 µs/dB. We
note that this value is close to the one that has been obtained
from the analysis of measured channels in [15].

Now, we focus on the coherence bandwidth. In Fig. 7,
we show the coherence bandwidth as a function of the
delay spread. We have found that the best fit is given by
B

(0.9)
C = 0.067στ . In [23], a similar relation has been obtained

for the measured channels, namely,B
(0.9)
C = 0.055στ . Hence,

the close matching between the experimental results and the
simulations validates the modelling approach.

V. CONCLUSIONS

We have addressed the random generation of PLC channel
responses with statistics in agreement with that of measured
channels. We have followed the top-down approach. Firstly,
we have described the multipath propagation model, from
which the analytical expression of the PLC channel fre-
quency response can be derived. Then, we have introduced
the variability into a restricted set of model parameters to
obtain a random channel generator algorithm. We have derived
the closed expression of the statistical frequency correlation
function and the mean path loss profile of the generated
channels. Hence, we have found the values of the model
parameters that allows generating channels in good agreement
with the experimental ones. To this aim, we have presented
a novel fitting procedure. The procedure targets the average
path loss profile and the average coherence bandwidth of the
measured channels.

To test the model, we have targeted a set of measured
channels whose statistics is available in the literature. The
measured channels have been divided into nine channel classes
according to their capacity in AWGN conditions. For each
class, the average path loss profile and the average delay
spread are given. We have fitted the model to all the nine
channel classes, and we have provided the model parameters.
Furthermore, we have studied the statistics of the generated
channels, and we have found strong agreement with that
from measurements. This validates the model and the fitting
procedure.

Finally, we point out that although the model is intended
for in-home PLC, it may be extended to other application
scenarios. For instance, outdoor low-voltage PLC which will
cover an important role in the Smart Grid.

APPENDIX

DERIVATION OF THE STATISTICAL FREQUENCY

CORRELATION FUNCTION

In this section, we derive the closed form expression of the
statistical correlation function in (9). We start from (5),we
model the random parameters as described in Section II-B,
and we compute (8). We exploit the statistical independence
of the path gainsci andgi, to obtain

φ(f, λ) = |A|2 σ2
g

(

1 + b20f
K2 (f + λ)K2

)

× E





Np∑

i=1

e−j 2πλ
ν

ℓie−(2a0+a1(fK+(f+λ)K))ℓi



 , (17)

where the expectation targets the number of paths and their
lengths. We further introduce the following notationα(f, λ) =
2a0+ a1(f

K +(f +λ)K) andβ (λ) = 2πλ/ν. Now, the path
lengths are modelled as independent and uniformly distributed
random variables between 0 andL. Therefore, (17) turns into

φ(f, λ) = |A|
2
σ2
g

(

1 + b20f
K2 (f + λ)

K2

)

×
1− e−(α(f,λ)+jβ(λ))L

(α(f, λ) + jβ(λ))L
E [Np] .

(18)
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Finally, we recall that the number of paths is modelled as a
Poisson random variable with modified alphabet (see Section
II-B). Therefore, the expectation in (18) reads

E [Np] =
ΛL

1− e−ΛL
. (19)

Substituting (19) into (18), as well as the termsα(f, λ) and
β(λ), we obtain (9), i.e., the statistical correlation functionof
the generated channels.
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