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Abstract

Due to their interactive nature, multimedia streams must
be sent over UDP with suitable countermeasures for min-
imizing the effect of data loss. Coding with oversampled
filter bank is a promising multiple description technique
which allows for signal reconstruction even in presence
of packet loss. Although the coded signal can be recon-
structed by means of a synthesis filter bank if no coeffi-
cient is lost, reconstruction is not trivial in the presence
of packet loss. Indeed, although a theoretical solution to
such a problem is well-known, its straightforward applica-
tion would require to wait for all the coefficients to arrive,
introducing excessive delay in interactive applications. In
this paper we propose a novel alternative approach which
puts in front of the synthesis filter bank a “restoring stage”
whose purpose is to reconstruct the lost coefficients. It is
shown that our approach can be applied in interactive ap-
plications, while preserving the optimality properties of
the theoretical solution.

1. Introduction

Playing multimedia streams over wireless networks is
quite challenging. As a matter of fact, the available band-
with in a wireless system is limited, thus calling for effi-
cient compression. On the other end, fading channel un-
reliability require error protection. Note that in the case
of multimedia streams, retransmission is useless since the
data would arrive too late to meet the constraints on repro-
duction delay.

Tipically the two goals of compression and error pro-
tection are achieved by two separate modules, i.e., a
source coder followed by a channel coder. Recently, mul-
tiple description coding has been suggested as a joint
source/channel scheme able to consider both aspect to-
gether [1, 2, 3] . In particular, coding with oversam-
pled filter banks has been proposed as a possible solution
[4,5, 6].

A main problem with oversampled filter banks is the re-
construction of the original signal. Such a problem (which
can be seen as the infinite-dimensional counterpart of an

over-determined system) can be easily solved by recog-
nizing that processing a signal with an oversampled filter
banks can be interpreted as the analysis of a vector (the
input signal) by means of a frame of vectors [7]. Such
an observation allows one to use the known results of
frame theory to the case of redundant signal coding. More
specifically, it is well-know that the original signal can
be reconstructed by means of the dual (filter bank) of the
analysis part. This allows for an efficient reconstruction
of the coded signal.

Coefficient loss can be modeled by supposing that the
signal was coded by using a punctured frame, i.e., a frame
obtained by deleting some vectors from the original one.
Even in this case, from a theoretical point of view, recon-
struction is not a problem: one computes the dual of the
punctured frame and use it to reconstruct the signal (note
that the solution of forcing to zero the lost coefficients
does not work).

Unfortunately, from a practical point of view, the im-
plementation becomes much more complex: both because
the dual frame will not have a filter bank structure any-
more and, more important, because the known algorithms
(even the fast ones [9]) for frame reconstruction require
the knowledge of the whole frame structure. This implies
that one should wait for all the future coefficients, in order
to know which functions have been deleted. Moreover,
this solution, which calls for storing the whole set of co-
efficients, could prove to be especially unfeasible for mo-
bile applications where the amount of available memory
can be limited.

It is worth emphasizing that the reconstruction delay in-
troduced by a naive application of the dual frame result is
not due to computational complexity, but to the necessity
of knowing the whole loss pattern before computing the
dual frame

In this paper, we present a novel scheme for reconstruc-
tion in presence of packet loss. Our scheme puts in front
of the standard filter bank synthesis stage a restoration
stage which recovers, whenever possible, the missing co-
efficients from the received ones, “hiding” the losses to the
synthesis filter bank. It can be shown that this is equiva-
lent to using the dual of the subframe corresponding to
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the packet losses. From a mathematical point of view, this
corresponds to building the pseudo-inverse of the lossy
analysis operator. More generally, we can recognize the
case when the received coefficients do not correspond to a
subframe and use appropriate concealment techniques. By
specializing the structure to the case of one-dimensional
FIR filter banks, we show that the restoration stage op-
erates “locally,” that is, it reconstructs the missing coef-
ficients as soon as enough information is available. This
allows to use the proposed structure in low-delay appli-
cations. Note that the known fast algorithms for the con-
struction of the dual frame, such as the one given in [9],
are based on a different procedure and require knowledge
of the complete loss pattern in order to carry out the re-
construction. This prevents their direct application in low-
delay contexts, where signal portions are reconstructed as
soon as the corresponding coefficients become available.

2. Oversampled filter banks and frames

A possible way to achieve some resilience against packet
losses is to code signal x by means of an oversampled filter
bank

vt = 3 X(mhefvn @)

where he, c=1,...,N, is the impulse response of the c-th
channel and N > M. Oversampling implies that there is
redundancy in the coefficients y¢[n]. It is intuitive that by
exploiting such a redundancy one can reconstruct x even
if some coefficients are lost.

The main question with this approach is how to re-
construct x from ye[n]. This problem is the infinite-
dimensional counterpart of an overdetermined linear sys-
tem y = Fx where F is a full rank N x M matrix with
N > M. If y belongs to Im(F), the space generated by
the columns of F, one can find x by left-multiplying y by a
left-inverse of F, that is, a matrix F~* such that F~“F = .
Note that, as long as y € Im(F), it does not matter which
left-inverse we usel. However, if y ¢ Im(F), and no a pri-
ori information about x is available, then one could want
to solve the system in a least square sense, i.e., to find X
such that y — FX has minimum length (this corresponds to
the maximum-likelihood estimate of x if y = Fx+ € where
€ is independent x and is a vector of independent Gaus-
sian variables). It is well-known that X can be obtained
as X = F'y, where FT is the pseudo-inverse of F [8]. It
is possible to show that, if the columns of F are linearly
independent, F' can be expressed as FT = (FtF)*Ft. It
follows that F' is a left-inverse and it is possible to show
that among all the left-inverses of F, FT is the only one
which maps the orthogonal complement of Im(F) to zero
[8]. The least square property of FT descends easily from
the fact that FFTy is the orthogonal projection of y onto
Im(F) [8].

1The left inverse is not unique unless F is square.

In the oversampled filter bank context, the counterparts
of y, x and F are, respectively, the sequence of received
coefficients yc[n], the input signal x and the linear map
F associated with the analysis filter bank. As a matter
of fact, one can express the synthesis filter bank opera-
tion as an infinite dimension matrix-vector product [10].
Since values y¢[n] are obtained by quantizing the filter
bank output values y¢[n], the sequence of received coef-
ficients will almost certainly not belong to the analogue
of Im(F), i.e., the linear space of the sequences which
can be generated by the analysis filter bank. Similarly to
the finite-dimensional case, if no a priori information is
available about x, the “best” reconstruction of x is the one
which best explains the received values, i.e., the signal X
such that the distance between FXand y is minimum. This
suggests to reconstruct x by using the “pseudo-inverse” of
filter bank (1). As a matter of fact, Eq. (1) can be inter-
preted as a scalar product between the input sequence and
the analysis function @ = h{{Mn—], with k=c+nN. In

operator form, we can write yx = (FX)k 4 (X, @). Inthe
case of an oversampled filter bank, functions ¢ constitute
a frame, and the general reconstruction formula uses the
pseudo-inverse F T of F, namely [9, 10]

R=F'y=(FF)TFy=FF)" T o=y ok
kez keZ (2)

The reconstructed signal is obtained by linearly com-
bining, with coefficients Y, functions @ = (F*F) ‘¢,
which are the infinite-dimensional counterpart of the

columns of FT. Set & 2 {@},..,, is called the dual frame
A
of ® = {Q}yez [9, 10]-

3. Problem statement and solution

According to the results of Section 2, the best reconstruc-
tion of x from the coefficients obtained with an oversam-
pled filter bank (1) is carried out by means of the dual
frame. It is possible to show that, in general, the dual
frame of a filter bank also has a filter bank structure with
filters he [7]. Unfortunately, such a nice result will lose va-
lidity just for the case when coding via frames would help,
i.e., when some coefficients are lost. Moreover, the sup-
port of the dual frame functions can in general be larger
than that of the filters ﬁc.

The solution we propose requires to put in front of the
standard synthesis filter bank hc (the dual of the orig-
inal frame when no coefficients are lost) a restoration
stage which recovers, whenever possible, the missing co-
efficients from the received ones. The restoration stage
will also detect when the corresponding subset of analysis
functions is not a frame anymore and communicate to the
synthesis stage which coefficients cannot be recovered in
order to allow the application of error concealment tech-
niques. It will turn out that if both analysis and synthesis



banks are made of FIR filters, then the restoration stage
operates “locally”, that is, as soon as enough coefficients
are received, it reconstructs the lost ones and sends them
to the synthesis stage. This allows for the application of
the proposed structure to low-delay applications.

Let | be the set of the indexes of the lost coefficients
and let [ be the analysis operator relative to the subset
& = {@, k & 1} of the remaining analysis functions. The
coefficient loss can be mathematically represented by the

operator
Yn ifnél
Xiy¥)n= {O ifnel 3
By using the just introduced notation we can finally for-
malize our goal: we are searching for a linear restoring
operator R: £2(1°) — ¢?(Z) such that F 'R is the pseudo-
inverseof F = x F.

In order to find the restoring operator, it is instrumental
to express the missing ¢« as a linear combination of the
known ones by exploiting the fact that g and @ are dual
frames. To such an end, observe that one can write, for
eachkel,

&= ;%‘P«%) kel

. 4
—g% @O0+ > Bl P, ) @
mel

By taking the scalar product of both sides of (4) with x one
obtains

Ye= (%) = g%%% Zl(ﬂn(ﬂ((l)m))
= %)’n n, ) + Zl Yim{@m, @)
nél me

®)

Equations (5) (there is one equation for each k € 1) can be
rewritten in matrix form as

Yi = M"Yic + MY (6)

where Y, (respectively, Yic) is a column vector whose el-
ements are coefficients yx, with k € | (respectively, with
k¢ 1)and M and M’ are matrices whose entry in row k
and column m is the scalar product {m, ). Equation (6)
can be solved as

Yi=(1—M)"'M"Ye 7)

It is possible to show that matrix (I —M) is invertible if
and only if the subset @, of the analysis functions corre-
sponding to the received coefficients is still a frame and
that, in general, the operator F 'R is the pseudo-inverse of
F.

If & is not a frame anymore, it is possible to show
that although FTRis such that ||§— FFTRJ]| is minimum
for every § € £2(1°) , it is not the true pseudo-inverse

since FTRY is not the minimum-length solution. This im-
plies that i T = RFTR, where P is the projection over
span®, = Ker (F)*, that is, the true pseudo-inverse can
be obtained by projecting the result of F TR over span®.

Note that while the property of making ||y— FFTRY]|
minimum has a perceptive sense (F TRy “best explains” ),
the fact that | Ty has minimum length does not grant that
it will be “close” to the real solution. This suggests that
R FTRY could be, from a perceptive point of view, as good
as the true pseudo-inverse solution F;Ty. Actually, in the
experimental section, we show that using F TRy instead of
F, Ty as the reconstructed vector gives similar results from
a perspective and objective point of view.

Finally, observe that in the case of oversampled FIR fil-
ter banks with FIR dual, the scalar product (@m, @) be-
comes 0 as soon as the distance between indexes m,K is
greater than or equal to an appropriate constant D. It is
easy to recognize that this implies that infinite matrix M
has a block-diagonal structure, making it possible to com-
pute the inversion as soon as each block is available.

4. Experimental results

In our experiments we used the 512 x 512 image
“monarch” shown in Fig. 1la and an oversampled filter
bank obtained by blockwise processing with 8 x 8 DCTs
the image and its translated version by (4,4) pixels. This
is equivalent to oversample the output of the DCT filter
bank on the quincunx lattice {4- (i 4+ 2j,i) : (i,]) € Z?}
shown in Fig. 2. The resulting frame is a tight one with
redundancy 2.

Define the additional delay of a given pixel as the dif-
ference between the time when a pixel is reconstructed
and the time when the same pixel would have been re-
costructed if no packet loss had occurred. It is clear that
with no errors, the receiver can reconstruct each pixel with
an additional delay equal to zero.

In order to compute the delays introduced by the pro-
posed algorithm it is necessary to know the order used for
sending the coefficients. In this specific case we used a
row-wise ordering by sending the row of blocks starting
from (0, 0), the row of blocks starting from (4,4), the row
of blocks starting from (8,0) and so on... Such an order-
ing is exemplified for the case of four blocks per row in
Fig. 3.

We simulated the coefficient loss within the hypothesis
that every coefficient is lost with probability Pigss = 0.008
which corresponds, approximately, to losing one coeffi-
cient every two blocks. Fig. 4 shows the histogram of
the delays introduced in pixel reconstruction. Since each
pixel can be reconstructed only when both its 8 x 8 blocks
are completed, it is clear that the delay will always be a
multiple the time T necessary to transmit an 8 x 8 block.
Because of this, the delays in Fig. 4 are measured in units
of T. From Fig. 4 one easily deduce that the maximum



(b)
Fig. 1. (a) 512 x 512 test image “monarch.” (b) The same
image reconstructed by forcing to zero the lost coefficients
(Pioss = 0.008). The procedure proposed in the paper re-
constructs (a) exactly with a 16 row average delay.

delay is 217T and the mean delay is approximately equal
to 88T. Both delays are much smaller than the delay intro-
duced by the “standard” algorithm which would wait for
all the coefficients to arrive introducing a delay equal to
the time necessary to transmit all the blocks, i.e., 1024T.

The strong peak at 17T in Fig. 4 is due to the fact that if
a lost coefficient is “isolated” (that is, it is the only coef-
ficient in its block), then reconstrution happens after one
row of DCT blocks. The delays less than 17T are due to
the coefficients which were could not be sent to the syn-
thesis stage before the reconstruction of the lost coeffi-
cient.

4.1. Proposed solution vs. true pseudo-inver se

In order to assess the differences between FTR and F T
when @ is not a frame, we simulated packet losses with
different values of Pioss. The results can be seen in Fig 5
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Fig. 2. The dots show the quincunx sampling lattice used
with the two-dimensional 8 x 8 DCT filter bank employed
in the experiments. The dashed boxes show the supports
of some functions of the corresponding frame.

Fig. 3. Ordering used for sending the coefficients in our
experiment. Numbers in the blocks show the order the
block coefficients are sent.
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Fig. 4. Histogram of the delays necessary to reconstruct
a pixel with the image of Fig. 1a and Pgss = 0.008. The
unit of the x axis is the time necessary to transmitan 8 x 8
coefficient block.
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Fig. 5. PSNR vs. Py for the proposed algorithm with
no projection onto span{®, }: one transmission and aver-
age. PSNR vs. Py for the pseudo-inverse solution: one
transmission.

which shows the PSNR obtained for different values of
Poss. Circles are relative to the results obtained after a
single image transmission and using F 'Ry as the recon-
structed vector, while the plus signs are relative to /1y
for the same loss pattern. One can see from the figure
that the overall performance is quite similar in the two
cases, and that there is no apparent advantage in perform-
ing the projection after the synthesis stage. The plot also
reports the average performance when no final projection
is computed. The average is computed over 10 indepen-
dent transmissions for each value of Pjggs.

5. Conclusions

Using oversampled filter banks in coding applications al-
lows one to reconstruct the coded signal even in presence
of coefficient loss. In order to make such a technique ef-
fective it is necessary to have a practical algorithm for re-
costructing the lost coefficients and for checking which
signal parts are definitively lost. In this paper we pre-
sented a practical solution to such a problem. The pro-
posed solution puts, before the synthesis filter bank, a
restoring stage which reconstructs the missing values and
finds which signal parts are definitively lost. If the analy-
sis and synthesis filter banks are made of FIR filters, the

restoring stage operates “locally” reconstructing the lost
coefficients as soon as possible. This allows for the appli-
cation of the proposed structure in low-delay and interac-
tive applications.
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