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Abstract — We address the problem of determining how to 
optimally exploit the time-frequency diversity in a coded 
OFDM system. We assume to deploy a code that generates 
complex codewords with M-ary alphabet of length equal to 
NNB where N is the number of tones. The codewords span 
NB blocks over which the fading is assumed to be quasi-
static but independent across distinct blocks. We determine 
rate/complexity tradeoffs for maximum achievable diversity 
gains, and coding gains as a function of the channel 
response. We dig into the benefits and disadvantages of 
deploying interleaving, and we show that it helps to 
maximize diversity/coding gains with high probability. 

Keywords — Coding, diversity, fading channels, interleaving, 
OFDM.     

1. Introduction 
Wideband channels exhibit frequency selectivity and 

consequently severe time dispersion. When transmission is over 
such channels the receiver must implement some form of 
equalization to overcome the intersymbol interference 
introduced by the time-dispersive channel. The equalization 
task simplifies when transmission is based on some form of 
multicarrier modulation. Orthogonal frequency division 
multiplexing (OFDM) has become a popular multicarrier 
modulation technique that allows for a very simple detection 
scheme [9]. It is based on deploying, at the transmitter side, an 
N-point IFFT followed by the insertion of a cyclic prefix. The 
receiver simplifies to a block that disregards the cyclic prefix, 
followed by an N-point FFT. If the cyclic prefix is longer than 
the channel time dispersion, at each FFT output we get the data 
symbol transmitted on that sub-channel weighted by the channel 
frequency response, plus thermal noise. Therefore, the detector 
simplifies to a one-tap equalizer, i.e., a symbol decision device 
that requires only knowledge of the sub-channel weight.  

If transmission is uncoded, the frequency diversity provided 
by the frequency selective fading channel cannot be exploited. 
In other words, if a sub-carrier frequency coincides with a 
channel null, then the information carried by that sub-carrier is 
lost. Therefore, channel coding has to be deployed in order to 
exploit some frequency diversity, and grant reliable 
transmission. The resulting scheme is often referred to as coded 
OFDM (COFDM) [3],[9],[10]. 

In this paper we address the problem of determining how to 
optimally exploit the time and frequency diversity in a coded 
OFDM system. We assume to deploy a channel encoder before 
OFDM modulation. The encoder generates complex codewords, 
with M-ary alphabet, of length equal to NNB where N is the 
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number of tones. The channel is assumed to be time-variant and 
frequency selective. In particular we assume a block Rayleigh 
fading model, i.e., the channel is assumed to be time-invariant 
over the duration of a given block but it varies in an 
independent fashion in the adjacent block. The codewords span 
one or more blocks. The cyclic prefix is assumed to be long 
enough to cope with the channel time dispersion. 

The deployment of coding has the potentiality of yielding a 
diversity and a coding gain over the uncoded OFDM system. 
We study the error rate performance, and we derive design 
criteria for COFDM such that both the diversity gain, and the 
coding gain are maximized. The analysis goes through the 
analysis of the pairwise error probability. In turn the pairwise 
error probability depends on the rank and determinant of a 
generalized Vandermonde matrix whose structure is a function 
of the channel and the error event itself. We derive necessary 
and sufficient conditions under which the generalized 
Vandermonde matrix is full rank. Not only the Hamming 
distance but also the error position patterns play an import role. 
It is found that certain codes with Hamming distance equal to d 
(with d being the rank of the channel correlation matrix) have 
pathologic behavior and do not achieve full diversity when used 
in a conjunction with OFDM modulation. 

We also consider the deployment of time-frequency 
interleaving. The idea is widely applied, however, the approach 
is often heuristic. Instead, our analysis helps understanding the 
effect of the deployment of interleaving in terms of coding and 
diversity gains. It is found that interleaving may decrease the 
diversity exploitation of the code. However, it makes it 
unlikely. In certain conditions, interleaving can preserve the 
diversity gain of the code but it is beneficial since it is capable 
of increasing the coding gain. 

2. Coded OFDM 

We consider a coded OFDM system architecture as 
described in what follows. An information bit data block is 
channel encoded into an M-ary complex codeword a  of length 
NNB. The codeword is split into NB sub-words of length N, 
{ ( )}ka l , 0,..., 1k N= − , 0,..., 1Bl N= − . Each sub-word is 

OFDM modulated by applying an N-point IDFT whose outputs 
are 
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A cyclic prefix of length µ  symbols is added to cope with the 
time dispersion introduced by the channel. We emphasize that 

( )ka l  is the encoded complex data symbol transmitted on sub-

channel k over block l at rate 01/T  with 0 ( )T N Tµ= + . It 

belongs, for instance, to the M-QAM constellation. 
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After P/S conversion, the symbols 0( ) ( )nx nT lT x l+ =  are 

transmitted over a frequency selective fading channel. In our 
baseband discrete time model, we assume a channel impulse 

response 0 1
( ; ) ( ) ( )PN

i ii
g nT lT l nT p Tα δ

=
= −∑ with {0,..., }ip µ⊆   

being the PN µ≤  tap delays. Note that the channel can be 

sparse. The channel tap gains are assumed to be complex 
Gaussian with zero mean (Rayleigh fading), and normalized 
power 2[| | ] 1ii

E α =∑ . The channel taps are time-invariant 

over the duration of an OFDM symbol, however, they may vary 
over the following block in an independent fashion. This model 
corresponds to the well known block fading model [4].  

The receiver comprises conventional OFDM demodulation 
followed by maximum likelihood channel decoding. After 
having disregarded the cyclic prefix, the N-point DFT outputs 
read 
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for 0,..., 1k N= − , where ( )kw l  is a sequence of i.i.d. Gaussian 
random variables with zero mean, and variance N0. Under the 
AWGN assumption, the optimal maximum likelihood channel 
decoder decides in favor of the codeword 0,..., 1

0,..., 1ˆ ˆ{ ( )}
B

k k N
l Na l = −
= −=a  

that maximizes the Euclidean distance metric 
1 1 2

0 0
ˆ| ( ) ( ) ( ) |BN N k k k
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3. Pairwise Error Probability 
The pairwise error probability conditioned on the channel 

state information is 
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The right most inequality follows from the conventional 
Chernoff bound, and the squared pairwise error distance 
between the transmitted codeword and the codeword we decide 
in favor of, is defined as  
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with ˆ( ) ( ) ( )k k kl a l a lε = − . From (2)  we can write that  
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If we use matrix notation with 1( ) [ ( ),...., ( )]
P

T
Nl l lα α=α , and 

( )lG  being the P PN N×  matrix whose elements are  
2
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=∑ , we can rewrite (5) as a 

normal quadratic form [5],[8] 
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In (6) ,m lλ  0,..., 1Pm N= −  are the NP eigenvalues of the matrix 

( ) ( )l lR G , with ( ) [ ( ) ( )]Hl E l l=R α α  being the channel taps 

correlation matrix (assumed to be positive definite), while ,m lβ  

is a sequence of i.i.d. Gaussian random variables with zero 
mean and unit variance. Note that in our model the channel tap 
gains are time-invariant over a single OFDM symbol but 

change independently in the adjacent block. Therefore we can 
drop the dependency of the index l in the channel taps 
correlation matrix. 
 Under the Rayleigh fading assumption the probability 
density function of the squared distance can be evaluated in 
closed-form [5],[8], which yields  
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with ,i m lλ λ=  for Pi lN m= + , and PN N′ ≤  is the number of 

distinct eigenvalues each with multiplicity 1,..., Nm m ′ . Further, 

,i nA  are the coefficients of the partial fraction expansion of the 

characteristic function (residues) 
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If we average over (7) we obtain the average pairwise error 
probability in closed-form 
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Finally, with the Union Bounding technique we can evaluate the 
average bit and frame error rates. 

3.1 Chernoff Bound and Design Criteria 

Averaging over the distribution of 2
,| |m lβ  (exponential 

with Rayleigh fading) the right most term in (3) yields 
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where 
1

0

BN

ll
r r

−

=
=∑ , and lr  equals the number of non-zero 

eigenvalues of ( )lRG . Therefore, the COFDM system can 
achieve a diversity gain (slope of the error rate curve in the log 
scale) of r, and a coding gain (shift of the error rate curve) of 

( )
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SE E a l= . The design of the 

code should maximize the diversity and coding gains [4],[6].  
 Note that if the channel is flat there is no frequency 
diversity available. However, maximum time diversity 
exploitation can be obtained with coding across BN  blocks if 

the code has minimum time Hamming distance THd  (number of 

non-zero 
1 2

0
( ) | ( ) |

N k
TE k

d l lε−

=
=∑  for 10,..., Bl N −= ) equal to BN  

[4]. On the other hand, if the channel is quasi-static, e.g., when 
coding is limited to a single block, the only source of diversity 
is the frequency diversity. In the remainder of this paper we 
mostly focus on the quasi-static channel case. 

4. Quasi-Static Frequency Selective Fading Channel 

Let us assume a quasi-static frequency selective channel 
with full rank correlation matrix ( ) Pd rank N N= = <R . 

Without loss of generality we can assume coding over a single 
OFDM symbol (block) and set 0l = . Then, the (frequency) 
diversity gain is ( )r rank d= ≤G . The CODFM fully exploits 

the channel diversity only when ( )rank d=G . In such a case,    

 1 1
0ˆ( 0.5(4 ) | | | |dP N − − −→ ≤a a) R G  (11) 

and consequently the maximization of the coding gain calls for 
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the maximization of the determinant of the matrix G . If we 
assume an error sequence of length L we can explicitly 
write G as follows: 

 

1

11 1 1 2

2 1 2 2

1 2

2 2

2

             diag  [| | ,....,| | ]

...

... ...
     

... ... ... ...

...

L

d

L dL L

k kH

k pk p k p

k p k p j
N

k pk p k p

e

e
π

ε ε
ω ω
ω ω ω

ω ω ω

−− −

− −

−− −

= =

 
 
 = =
 
 
 

G F ΕF Ε

F
 (12) 

where the error positions are assumed to be 

1 20 ... Lk k k N≤ < < < < , and the tap delays are assumed to be 

1 20 ... dp p p N≤ < < < < . 

 Let 
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1( ) ( ) ( )rank rank rank= =G Ε F F since 1Ε  is full rank equal to 

L . If we define the relative error distances 1i ik kδ = − , 

1,...,i L= , and the relative channel delays 1i ip pτ = − , 

1,...i d= , we can write 
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Therefore, the rank of F coincides with the rank of F� . F� is 
obtained by deleting some rows and some columns from an 
N N×  Vandermonde matrix W [2]. From the above results we 

can state the following two propositions. 
 

Proposition 1. In quasi-static Rayleigh fading, to achieve a 
frequency diversity gain of d (full diversity) the Hamming 
weight L  of the error sequence has to be at least d . 
Consequently, to achieve full frequency diversity the minimum 
frequency Hamming distance FHd  (number of nonzero 

2( ) | ( 0) |k
FEd k lε= =  for 0,..., 1k N= − ) of the code has to be at 

least d. 

Proposition 2. The maximum achievable diversity with a 
code having minimum Hamming distance FHd is min{ , }FHd d . 
 

Therefore, in quasi-static frequency selective fading, the 
diversity gain is determined not only by the frequency 
Hamming weight of the error events, but also by the error 
patterns (positions). The shape of the constellation is irrelevant 
with respect to the code diversity. 
 In the following we state several necessary and/or sufficient 

conditions under which ( ) ( ) ( )rank rank rank r= = =G F F� .   
 

 Proposition 3. All error sequences of length N achieve full 
diversity, i.e., ( )rank d=G . 

Proof. When the length of the error sequence is N  the 

matrix F� is obtained from a N N×  Vandermonde matrix 
W where a number of rows has been deleted. Since we assume 

10 ... dp p N≤ < < < ,  the d N×  matrix F� is full rank. 

 Proposition 4. All error sequences of length one do not 
achieve any diversity benefit. Consequently, uncoded OFDM 
does not provide any diversity gain. 

Proof. We just need to notice that an error sequence of 
length one generates the following Toeplitz-Hermitian matrix 

 1 11 1 1 2 ( )( )2| | {1, ,..., }dk p pk k p pToeplitzε ω ω −−=G . (14) 

Such a matrix has rank equal to one, so that RG  has also rank 
one with the only non-zero eigenvalue 1( ) { }k traceλ = RG . The 

fact that the eigenvalue is a function of the error event position 
translates into sub-channels with different error rates whenever 
the channel taps are correlated [8]. 
  Proposition 5.  If the channel has rank N, the diversity 
order equals the (frequency) Hamming weight of the error 
sequence. In other words, the minimum Hamming distance of 
the code determines the diversity order. 

Proof. It can be proved similarly to Proposition 3. 
 

 Proposition 6.  If the relative channel delays, or the relative 
error distances are consecutively ordered respectively as 

1i iτ = − , 1,2,3,...i d= , and 1i iδ = − , 1,2,3,...,i L= , the 

diversity gain is min{ , }L d . In the former case the channel is 
non-sparse, in the latter the error event is non-sparse. If the 
channel is non-sparse the diversity gain is determined by the 
minimum Hamming distance of the code and if it is larger or 
equal to d then full diversity is achieved. 

Proof. The matrix F� is a rectangular Vandermonde matrix 
with rank min{ , }L d . 

 

 A more general sufficient condition for F� to be full rank is 
stated in the following proposition. We have found by 
numerical inspection that the condition is not necessary. 
 

 Proposition 7. Let {1,..., 1}a N∈ − be relatively prime with 

N, i.e., { , } 1GCD N a =  then, assuming L d≤  the diversity gain 

equals L  if  
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<  (15) 

while assuming L d≥  the diversity gain equals d  if  
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Proof. We prove (15) . Similarly, we can prove (16).  

Let us assume L d≤ . Then, F� is not full rank iff there exists a 

non-zero L-tuple { }jλ such that 0i j

jj

τ δλ ω =∑   1,...i d∀ = . 

This is true iff there exists a polynomial ( ) j

jj
P x xδλ=∑ that is 

zero for ix τω=  1,...i d∀ = . Consequently, it can be written as 

the product of two polynomials, 
1
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=
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The right most polynomial has degree d , while ( )P x has degree 
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{ ( )} max { }j

j L
Deg P x δ

=
≤ . Therefore, a necessary condition for 

F� to have rank lower than L  is that 
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max { }j
j L

d δ
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Consequently, a sufficient condition for F� to have full rank L  
is that 

1,...,
max { }j
j L

d δ
=

> . This proves (15) for 1a = . 

Now, let {1,..., 1}a N∈ − such that { , } 1GCD N a = . Then, 

a  has the inverse, i.e., it exists  1 {1,..., 1}a N− ∈ −  such that 
1 mod 1aa N− = . Let us take ( ) ( )aS y P y= , then if ( ) 0iP τω =  

for all 1,...,i d= , also 
1 1

( ) ( ) ( ) 0i i ia aaS P Pτ τ τω ω ω
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= = =  for all 

1,...,i d= . Therefore, a necessary condition for the rank to be 

lower than L is that 
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is a sufficient condition for F� to have full rank L . 
 

Proposition 8. Let Lεεεε  be an error sequence of length 

L d≥ that achieves full diversity d , then every error sequence 

L′εεεε of length L L′ ≥  that has Lεεεε  as sub-sequence achieves full 

diversity d . Further, | | | |L L′ >G G  where | |LG  is the 

determinant of G  corresponding to Lεεεε . It can be computed 

recursively as follows: 

 1 2 -1
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L L L L Lε +
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with the initial determinant equal to 
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 Proof. Let us consider 1L d′ = + , then we can write 

1

1

2
1 1 1

2
1 1

  [ ] { ,| | }[ ]

                               | |

d

d

kH H H H
d d d d d d d d d d

kH H
d d d d d

diag ε
ε

+

+

+ + +

+ +

= =

= +

G F Ε F G F f Ε F f

F Ε F f f

� �
(19) 

with 1d +f being an appropriate 1d × vector that is associated to 

the error sequence 1 2
1 [ ,| | ]dk

d d ε +
+ =ε εε εε εε ε . It follows that the 

determinant of   1d +G is 
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Note that the first equality (20) holds since dG  is assumed to 

be full rank. The last inequality holds since dG is positive 

definite. Finally, 2| | | || || | | | | |H H
d d d d d d= =G F Ε F F Ε , which 

proves (18), while (17) is obtained recursively from (20). 
 

 Proposition 9. If the channel is non-sparse, dG has 

determinant                                                                             (21) 

2 2 2 2
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n m n m

k k
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πε ω ω ε
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Proof. In such hypothesis F is a Vandermonde matrix of 
size d , and (21) follows from (18). 

5. Distance and Complexity Constraints 

Any block code (and also any finite length trellis codes) of 
rate R  bits/symbol with codewords consisting of BN blocks of 

length N  symbols that belong to an M-ary alphabet satisfies the 

Singleton Bounds [4]: 21 (1 / log )TH Bd N R M≤ + −      

21 (1 log )FHd N R M≤ + −   . Therefore, the diversity capability 

of the code is not influenced by the constellation shape. 
However, for a given rate, to increase the code diversity the size 
of the constellation has to increase. In terms of complexity, a 
trellis code can achieve diversity d  only if its constraint length 
is at least 1d − . If the code has rate R , then, to achieve 
diversity d  its complexity (number of states in the trellis) has 

to be at least ( 1)2R d −  [6]. Therefore, the complexity increases 
exponentially with the diversity order exploitation capability. 

6. Interleaving 

Interleaving is often deployed at the output of the channel 
encoder, and before the OFDM modulator [3],[7],[10]. 
Interleaving  can be performed either in frequency or in time, or 

jointly in time and frequency. The most interesting case is when 
both coding and interleaving are deployed across one single 
OFDM symbol, or equivalently across a number of OFDM 
symbols over which the channel remains static. In such a case 
the only source of diversity is the frequency diversity provided 
by the dispersive channel. As we have shown in the previous 
section the diversity gain is a function not only of the Hamming 
distance of the code but it also depends on the position of the 
errors within the codeword. When we deploy an interleaver the 
pattern of the errors is clearly influenced. In order to investigate 
the effect we assume to deploy a uniform interleaver. The 
interleaver maps a given error pattern of Hamming weight dFH  
and length N in all its possible distinct permutations with equal 
probability. The same analysis tool was used in [1] although in 
our case there is no code concatenation. Let εεεε  be an error 
sequence of Hamming weight dFH. Then, we can evaluate the 
average pairwise error probability computed over all possible 
interleavers ℑ :  

      ( ) ( ) 1

ˆ ˆ ˆ( ) ! ( | ( ))FH
FH

NPEP d Pd

−

ℑ

 = = ℑ
   ∑ε ε ε εε ε ε εε ε ε εε ε ε ε . (22) 

6.1 Effect of Interleaving on the Diversity Gain 

Assuming a quasi-static channel the interleaver has the 
effect of changing the error patterns (positions). If the channel 
is not sparse then the interleaver has no effect on diversity (see 
Proposition 6). On the contrary if the channel is sparse then a 
given full diversity error event may be mapped by the 
interleaver into a lower diversity error event, or vice versa, into 
a higher diversity error event. Overall, the effect of interleaver 
is to average out the diversity benefit and allow for simpler 
“although heuristic” code design. That is, it makes the 
probability of the code to achieve full diversity high.  

6.2 Effect of Interleaving on the Coding Gain 

Again we assume a quasi-static channel. If we assume the 
channel to be non-sparse, interleaving does not affect diversity 
however it changes the error patterns such that the coding gain 
may change. As an example, if we pick a maximum diversity 
BPSK code, the minimum coding gain is achieved in 
correspondence to the error sequence dεεεε with Hamming 

weight d that minimizes (21). Further, the average pairwise 
error probability can be bounded as  
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where ℑ  is the set of all possible combinations of the error 
position indices in the d-tuple 1[ ,..., ]dk k=k  with 0 1ik N≤ < − . 

7. Examples 

7.1 Two-Taps Channel 

Let us consider a 2-ray channel model with uncorrelated 
channel taps, i.e., 1 2{[ ,  ]}diag P P=R , 1 0p = , 2 1p ≥ . Then,  
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and compute in closed form the determinant and the 
eigenvalues, 

2 2 2
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Now, for all error sequences for which  2 ( )mod 0j ip k k N− =  

the diversity order equals one, and the only non-zero eigenvalue 

is 2
1 1 2( ) | |ik

i
P Pλ ε= + ∑ . For instance, let’s pick a 

geometrically uniform code that has a single minimum 
Hamming distance codeword that is equal to two. The encoder 
is followed by uniform interleaving. If 2/N p is integer, and if 

the distance among the two errors is equal to 2 2/N pτ =  the 

error event does not achieve full diversity.  In the left plot of 
Fig. 1 we show the probability to achieve full diversity as a 
function of the tap delay 2p . It has been computed assuming all 

distinct pairs 1 2,k k with equal probability. In the right plot of 

Fig. 1 we show the distribution of the normalized coding gain 
assuming BPSK mapping. As the figures show, the probability 
of achieving full diversity increases when the number of tones 
(interleaver length) increases. The coding gain distribution is a 
function of the number of tones (interleaver length).  

7.2 Repetition Code 

Let us consider a repetition code with rate 1/R L= . It 
generates for each input symbol a codeword of length equal to 
L , thus, the minimum Hamming distance equals L . Let us 
assume a channel with rank d L≥ . The frequency diversity 
gain depends on how we map the codewords into the sub-
channels. It certainly equals L if we transmit the N LK=  coded 
symbols in the natural order across the N tones. In fact in such 
a case Proposition 6 holds. Instead if we deploy a uniform 
interleaver, there is a non-zero probability that the interleaved 
codewords generate error patterns for which the achieved 
diversity is less than L . If the channel is not sparse then 
diversity L  is achieved for all interleaver realizations. Further, 
the coding gain distribution changes resulting in possibly better 
average pairwise error probability. This is shown in Fig. 2 
where we consider a 4 taps non-sparse channel with 

1/ 22.5 {[1, 0.75, 0.5, 0.25]}diag−=R    , and we compute according 
to (9) the pairwise error probabilities corresponding to all 
possible interleaver patterns. We assume an error event with 
weight 2 or 4, with BPSK mapping. It is interesting to note that 
the worst performance (lowest coding gain) is achieved by a 
non-sparse error pattern. As the interleaver length (number of 
tones N) increases the PEP spectrum broadens. In any case there 
exist interleavers that significantly better the PEP performance.  

7.3 Trellis Code 

If we consider trellis codes, the performance is determined 
not only by the Hamming distance of the code but also by the 
error positions. The construction of trellis codes has to be 

carried out by searching for codes for which F� is full rank. A 
widely deployed approach is to use binary convolutional codes 
followed by interleaving and symbol mapping. According to 
our analysis the effect of interleaving is to average out 
performance, i.e, to allow for maximum diversity and coding 
gains with high probability. 

8. Conclusions 
Several necessary and sufficient conditions have been 

derived for achieving maximum diversity and coding gains in 

COFDM. The effect of interleaving on diversity and coding 
gain has been analytically studied.     
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Fig.1. Probability of achieving full diversity, and coding gain distribution. 

Fig.2. Spectrum of pairwise error probability with 4 taps fading channel. 
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