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Abstract � We compute the exact matched filter 
performance bound for multitone modulated signals in 
time-variant frequency selective fading channels. The bound 
gives the probability of error that is achievable with ideal 
maximum likelihood detection. The computation is done 
following an exact calculation. This study allows for an 
analytical treatment of the diversity effect on performance 
as a function of the channel time and frequency selectivity. 
It is found that filtered multitone modulation is a diversity 
transform that is capable of yielding coding gains and 
time/frequency diversity gains as a function of the sub-
carrier spacing, and the sub-channel filter shape. 

Keywords — Diversity, fading channels, filtered multitone 
modulation, matched filter bound, OFDM, optimal detection. 

1. Introduction 
In this paper we derive analytical expressions for the 

distribution and the average of the bit-error-rate for filtered 
multitone  (FMT) modulation [1] over time-variant frequency 
selective fading channels when ideal maximum likelihood 
detection is deployed [5]-[8]. We already attacked the problem 
of determining the MFB performance in [6]. However, the 
study in [6] was based on the deployment of the Chernoff 
bounding technique, and it did not provide an exact analytical 
expression. Instead, in this paper, we study the exact MFB 
performance of FMT modulation. Analytical expressions for 
both the distribution and the average of the bit-error-rate are 
derived. These are obtained by first developing an equivalent 
discrete-time doubly dispersive channel model. Then, we derive 
the distribution of the squared distance that is associated to a 
pairwise error event. Such a distribution is obtained with the 
method of the residues, which is feasible once it is recognized 
that the squared distance can be written as a normal quadratic 
form [7]. 

 With FMT modulation, a high rate information data symbol 
sequence is converted into a number of low rate sub-sequences. 
Each low rate sequence is transmitted over a sub-channel that is 
shaped with an appropriate filter centered on a given sub-
carrier. When the sub-carriers are uniformly spaced and the sub-
channel filters are identical, the efficient digital implementation 
is based on a FFT and low rate polyphase filtering. Discrete 
multitone modulation (DMT) is a particular implementation that 
deploys rectangular time domain filters such that the sub-
channel filtering operation is avoided. DMT is also referred to 
as orthogonal frequency division multiplexing (OFDM). In 
general the frequency selectivity of the channel introduces 
intercarrier (ICI) and intersymbol (ISI) interference at the 
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receiver side. The design of the sub-channel filters, and the 
choice of the sub-carrier spacing in an FMT system aims at 
subdividing the spectrum in a number of sub-channels that do 
not overlap in the frequency domain, such that we can avoid the 
ICI, and get low ISI contributions. In a DMT system the 
insertion of a cyclic prefix longer then the channel time 
dispersion is such that ISI and ICI are eliminated and the 
receiver simplifies to a simple one-tap equalizer per sub-
channel. The channel temporal selectivity can also introduce 
ICI as a result of a loss of the sub-channels orthogonality. This 
happens when the channel is not static over the duration of the 
FFT block.  

The presence of ISI and ICI is such that some form of 
multichannel equalization is required. We herein consider the 
deployment of optimal maximum-likelihood equalization [5]-
[8]. For uncoded transmission, a limit on the best attainable 
performance is given by the probability of error achieved with 
perfect equalization, i.e., matched filter performance bound 
(MFB). That is, the bit-error-rate achieved when the equalizer is 
capable of canceling all interference components. The analysis 
of the matched filter performance bound has attracted 
considerable attention in various wireless communication 
scenarios (see, for instance, Clark et al. [2], Baas et al. [3]). 
These studies are interesting because they allow for an 
analytical treatment of the diversity effect on performance as a 
function of the channel time and frequency selectivity.  

The analysis of the MFB performance reveals that FMT 
modulation can be interpreted as a diversity transform. When 
optimally detected, FMT modulation is capable of yielding 
coding and diversity gains as a function of the sub-channel filter 
impulse response, the number of tones, and the time-frequency 
characteristics of the channel. In general an increase in the 
number of sub-carriers translates into a loss of achievable 
frequency diversity gain, but into an increase in the time 
diversity gain. On the contrary, DMT modulation with cyclic 
prefix and conventional detection (OFDM) does not allow for 
any frequency diversity exploitation. Further, it suffers from the 
intercarrier interference introduced by time-variant fading such 
that a significant error floor is introduced.  

A comprehensive set of numerical results is reported to 
substantiate such conclusions.  

2. System Model 
We consider a discrete-time implementation of a 

multicarrier modulator. The complex lowpass multitone 
modulated signal  can be written as 

 2
0 0( ) ( ) ( )         kj f iTk

k l
x iT a lT g iT lT e iπ

∈ ∈

= − ∈∑∑
Z

Z
K

 (1) 

where  is the sequence of complex data symbols (e.g., 
M-QAM or M-PSK) transmitted on sub-channel k at rate 1/  

0( )ka lT

0T
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with ;0T NT= ( )g t  is a sub-channel shaping filter (prototype 

filter); K={0,…,M-1} is the set of sub-carrier indices k. The 
sub-channel carrier frequency is kf , and in general N M≥ . If 

we define the sub-channel transmit filter as 2( ) ( ) kj f tk
Tg t g t e π=  

(frequency shifted prototype pulse), and  
we can write 

02
0 0( ) ( )kj f lTk ka lT e a lTπ=!

  (2) 0 0( ) ( ) ( )        k k
T

k l

x iT a lT g iT lT i
∈ ∈

= −∑∑ !
Z

Z
K

∈

An efficient implementation, referred to as filtered 
multitone modulation, is possible when the sub-carriers are 
uniformly spaced, i.e., 1/kf k T=  with . It comprises 
the S/P conversion of the data symbol stream, an M-point IFFT, 
and low-rate sub-channel (polyphase) filtering [1]. With 
minimal sub-carrier spacing (critically sampled FMT system) 

1T MT=

N M= , and . The prototype pulse has 
nominal bandwidth 1/T

0( ) ( )k ka lT a lT=! 0

0≤1/T1 that, for fixed T, becomes smaller 
as the number of sub-carriers increases. With a sufficiently high 
number of sub-carriers the unfolded spectrum of (1) has width 
almost entirely confined in 1/T, which can be practically 
achieved by avoiding transmission over some of the outermost 
sub-carriers. As an example, in this paper we consider the 
deployment of rectangular time domain prototype pulses, 
rectangular frequency domain pulses, and Gaussian pulses: 

 rect rect
1( ) ( ) rect( )ig i g iT

NN
= = ,   

sinc
1( ) sinc( )ig i

NN
= ,         ( )2/4

gauss
2( ) i Ng i e

N
σσ

π
−=  (3) 

where 2 / ln 2Bσ π= , and B normalized bandwidth. Note that 
the Gaussian pulses have the interesting property of having 
concentrated impulse and frequency response.  

The MT signal (1) is digital-to-analog converted, RF 
modulated, and transmitted over the air. The received signal is 
RF demodulated, and analog-to-digital converted. The sequence 
of received samples at rate 1/T  can be written as  

    (4) ( ) ( ) ( ; ) ( )E
n

y iT x nT h iT nT iT w iT
∈

= − +∑
Z

where  is a sequence of i.i.d. circularly symmetric 
Gaussian random variables with zero-mean, and variance 

( )w iT

0N . 
( ; )Eh tτ is the equivalent impulse response that comprises the 

DAC/ADC filters, and the frequency selective time-variant 
fading channel. We assume the channel to be practically time-
invariant over the duration of the ADC filter whose main lobe 
has duration ~2T. However, we emphasize that the channel is 
not necessarily static over the duration of the prototype pulse. 
Conventionally, the analog filters in the DAC and ADC are 
square-root raised cosine filters.  

If we define the equivalent sub-channel receive filter as 
( ; ) ( ) ( ; )k k

R T Ei
g t g iT h iTτ

∈
= ∑ Z

tτ −

+

 

 the broadband received 
signal can be written as the sum of M narrowband signals: 

 . (5) 0 0( ) ( ) ( ; ) ( )k k
R

k l

y iT a lT g iT lT iT w iT
∈ ∈

= −∑∑ !
ZK

We can represent the discrete-time equivalent channel impulse 
response with a T-spaced tapped delay line 

( ; ) ( ) ( )E p
p

h nT iT iT nT pTα δ
∈

= −∑
P

   { ,..., }P PN N= −P  (6) 

at has Gaussian distributed tap gains with a ce
correlation. We assume wide sense stationary uncorrelated 
th rtain 

scattering (WSSUS), and a common time selective correlation 
function across the delay profile [3], [7]. Let ( )g tφ  denote the 

delay power spectrum, ( )d tψ  the time-selective correlation 
function, and ( )Bg t  the ADC+DAC impulse response. Then, 
the equivalent channel aut elation reads  

* *
1 1 2 2 2 1 3 1[ ( ; ) ( ; )] ( ) ( ) ( ) ( )E E d g BE h t h t t t g g d

ocorr

B3 2 3 3τ τ ψ φ τ τ τ τ τ τ= − − −∫" (7) 

The analysis the follows is sufficiently general, and 
results apply to general delay power spectrum, and Dopp
spe

the 
ler 

ctrum models. However, for the delay power spectrum we 
mostly focus on the one sided exponential [2] or the 3GPP-ITU 
models [10]. For the Doppler spectrum we use the Jakes' model 
that is derived under the assumption of isotropic scattering. For 
this model 0( ) (2 )d dt J f tψ π=  where 0 ( )J t denotes the zero-
order Bessel function of the first kind, and df is the one-sided 
Doppler spre

Throughout this paper we use matrix notation. In particular, 
we denote the channel t

ad.  

aps mean vector with , and the 
cor

    
P Pi Nα−=α

for given integers 

[ ]E=m α
relation matrix with [ ]HE=R αα  where the vector α  is 

defined as 

 [ ,..., ]T T T
L L−=α α α     ( ),..., ( )]T

NiT iTα  (8)  [

PN , and L . The correlation ma
with size N L

trix is 
Hermitian, (2 1)(2 1)P + + . If we use numerical 

a riintegration of (7), we c n now w te [7] 

 0[ ] { ,..., }H H H
2B B BE toeplitz= =R αα G Φ G G Φ G  (9) L B

N 0 (2 ) { ,..., }
L Li d NJ f iT diagπ φ φ−=Φ  (10) 

 ... ... ...
( ) ... ( )

B P L c B P

B

B P L c B P L c

( ) ... (g N T N T g N T )L cN T

g N T N T g N T N T

− + +⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− − −⎣ ⎦

G  (11) 

with ( )l c g cT lTφ φ= , /cT T K= , and 1K ≥ .  

3. Optimal Mu e Detection 
Details about the optim be found in 

[6], [7], and er scenario. 
It b

ltiton
al multitone detector can 

in [5], [8] for the more general multius
asically consists of a bi-dimensional equalizer that deals 

with both the ICI and the ISI implementing a Viterbi algorithm 
with an appropriate metric. Under certain conditions it 
simplifies into a bank of single channel Viterbi equalizers. 
Given the model in (5), the optimal maximum likelihood 
detector seeks the data sequence 0{ ( )}kb lT=b , k ∈K# , l ∈Z , 

that minimizes the Euclidean distance | ( )y iT∆ = −∑  

0 0( ) ( ; ) |k k
Rl k

b lT g iT lT iT
∈ ∈

− −
i∈Z

2∑ ∑ !
Z K

. If the , 
the sub-channel filters are band limited, and the

annel detector simplifies to 
M single channel equalizers [7]. With sinc pulses (ideal FMT) 
such conditions are met. With rect pulses (DMT) the presence 
of intercarrier interference requires to jointly detect all sub-
channels. In the latter case simplified detection is possible when 
deploying a cyclic prefix, which is usually referred to as OFDM 
with cyclic prefix. If the prototype filter is time limited, e.g, 
with DMT modulation, a time-variant channel does not 
introduce ISI. However, ICI is present such that the optimal 

channel is
y do not overlap 

in the frequency domain, the multich

 
 
 
 

 static

V3-362



detector still requires to jointly detect all sub-channels [7]. From 
a complexity standpoint the deployment of practically time and 
frequency concentrated pulses should be pursued. On the 
contrary from a performance standpoint this conclusion is not 
necessarily true, as we will show in the next section. 

4. Exact Matched Filter Bound Performance 
U

state  i.e., 
the 

nder the hypothesis of perfect knowledge of the channel 
information s , the pairwise error probability (PEP),
probability that the optimal MT detector decides 

erroneously in favor of the sequence 0{ ( )}kb lT=b , k ∈K , 

l ∈Z , when 0{ ( )}ka lT=a  was indeed transmitted, is given by 

( )2
0) /(2 )Nb s  where the pairwise error 

(12) 

 2 2( , ) | ) |
i l k

d e
∈ ∈ ∈

= −∑ ∑∑a b #$Z Z K

. 

( | ( , )P Q d→ = a b

event distance reads  

0 0 0

( )

[ ( ) ( )] ( ;k

k

j f lT k k k
R

e lT

a lT b lT g iT lT iπ −$$$%$$$$&

 we consider uncoded transmission, single error events ar
possible, i.e., the detected sequence may differ only in one data 

,

( ) ( )k

e p p
i p p

j f pT p T

l

e g iT pT g iT p Tπ

′
′∈ ∈

′− ′× − −
Z P  (13) 

where  is the squared Euclidean dist
 the transmitted, 
SK signaling

oceed, let us assume the channel response, 
and

a

0

0

2 T

If e 

symbol from the transmitted sequence. The evaluation of such 
pairwise error probability yields a lower bound (performance 
limit) on the symbol error probability. In fact, this is the error 
probability achieved with perfect equalization. In literature it is 
referred to as matched filter performance bound (MFB) [2], [3]. 
Let us assume the single error event to occur on sub-channel k , 
and time instant 0lT . Then, the error event distance  can be 
written as follows 

2 , *( , ) ( ) ( ) ( )k k
MFB ed k l D s l D iT lT iT lTα α= = + +∑ ∑ 0 0

,

2 ( ) *

2
0| ( ) |k

eD e lT= ance 
between and the detected data symbol, e.g., 
with BP 4e SD E= .  

In general (13) is a function of the sub-channel index, and 
the time instant. To pr

 

 the prototype pulse to have (practically) finite duration. Then, 
{ ,..., }P PN N= −P , and ( ) 0g iT =  for { ,..., }g gi N N∉ − . Setting 

g PL N N= + , with matrix notation we obtain 

,0 ,0) H H2 ( , H H
MFB k kd k l α W GW α  (14) 

where [ P

e i lN k i k i lN
i

D + +
∈

= =∑α W G W α
Z

( ),..., ( )]T
i Pg iT N T g iT N T= + −g , * T

i ig g , i =G

{ ,..., }L Ldia=G .,g −G }k P k PG , 2 2
,0 { ,..j f N T j f N T

k diag e eπ π−=W , and        

2 1

{ ,..., }k k

L

diag
+

=W W W#$$%$$ . Since the vector of channel ta

is Gaussian, (14) is a norm
 We emphasize that when the channel impulse response is 

a

e c en

    

,0 ,0k& ps α  

al quadratic form (see [7] for details .

sparse, it is possible to reduce the size of the vectors and 
m trices in (14) by deleting the zero components of α and the 
corresponding  rows and columns in G  and kW . Assuming R  
to be full rank, and the channel taps to have zero mean 
(Rayleigh fading), the squared MFB distanc an be rewritt  
as [4], [7] 

 2 2
1

( ) | |N
MFB i ii

d k λ

)

λ β
=

= ∑  (15) 

where iλ  are the Nλ  eigenvalues

k , and 

 of the matrix 
H

e k k eD D=RW GW RG iβ  are i.i.d. complex Gaussian 

 va o m
we have dropped the de y
random riables with zer ean, and unit variance. Note that 

pendenc  on l since we are in stationary 
conditions. The probability density function, 2 ( )

MFBdp a , and the 

probability distribution function, 2 ( )
MFBd

F a , of (15) can be found 

through the inversion of the characteristic func e [2], and 
[7]). Let us assume to have 

tion (se
N ′  out of Nλ distinct eigenvalues 

1,..., Nλ λ ′ , each with multiplicity 1,..., Nm m ′ , then 

    2

1  

,
1 1

( ) 1( )
!

i
i

MFB

am nN

i nd
i n

ap a A e aλ
−′ −

= =

= ∑∑  (16) 
(n

i nλ −1)

    2

1 

, 1
1 1 0

1( )  
!

i
i

MFB

lamN n

i nd
i n l i

aF a A e
l

λ

λ

′ −−

= = =

⎛ ⎞⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑∑ ∑

whe

1( )a  (17) 

re ,i nA  are the coefficients of the partial fractions ex
of the characteristic function (residues)1

pansion 

 ( ),
1,

1 1
( ) ( )!

i
p

i i

m n N m

i n m n m n
p p ii i

dA s
m n ds

1/ i

p

s λ

λ
λ

− ′ −

− −
= ≠

⎡ ⎤⎧ ⎫⎪ ⎪= −⎢ ⎥⎨
− − ⎪⎢ ⎩⎣

∏ . (18) 
=

⎬
⎪⎥⎭⎦

 follows that the distribution of the squared distanc
 sum of Erlang distributions. 

It e is a 
weighted

Now, the average matched filter probability of error bound 
is computed as 2, 0( /(2 )) ( )e MFB R

P Q a N p a da
+

= ∫ . The 
MFBd

integral can be evaluated in closed form (e.g., see [2]) yielding 

 
1

0
, , 2 2 2 1

1 1 0 0

1( ) 1  
2 2 ( !) (1 / 4 )

imN
i

e MFB i n l l
i n l i

P k A
l Nλ

′

+
= = =

(2 )! / 4n l Nλ−⎡ ⎤
= −⎢ ⎥

+⎢ ⎥⎣ ⎦
∑∑ ∑ . (19) 

or BPSK, and QPSK signaling the bit-error-rate on sub-cF arrier 
k, ( )BER k , is given by (19) when  is respectively 

), 

 

eD set to 
4e SD E= , and 2e SD E= . Further, the bit error-rate 

complementary distribution equals (17

20 0 0[ ( / 2 )] ( )
MFBd

P BER a N F a= . (20) 

The average (across sub-channels) 

) (k Q≥

bit-error-rate can be 
defined as follows 

 ( ) /
k

BER BER k M
∈

= ∑ K
. (21)  

The analysis is sufficiently general to be applied to higher 
order constellations, e.g., M-QAM. We repo
corresponding to (19), (20), and (21) for various transmissio
sce

off bound we can write that 
| )i . Then, averaging over 

the 

rt numerical results 
n 

narios in Section 6.  

4.1 Gaussian Tail Function Bound 
Using the Chern

2
, 0 1

( ) 0.5exp( 1/ 4 |N
e MFB ii

P k N λ λ β
=

≤ − ∑
distributions of 2| |iβ (exponential) we obtain 

 
1 1

,
0 0

( )
2 4 2 4

i

d

i S i
e MFB

i

EP k
N N λ

− −
⎞ ⎛ ⎞

≤ + ≤⎟ ⎜ ⎟
⎠ ⎝ ⎠

∏ ∏
1 0

1 11
N

SE

λ λ λ
−

= ≠

⎛ ⎞ ⎛
⎜ ⎜ ⎟
⎝ ⎝ ⎠

 (22) 

where d equals the number of nonzero eigenvalues. This 
bound is useful to understand how the sub-channel filter
the sub-carrier spacing impact performance [6]. It reveals that 
                                                          

upper 
, and 

 
1, 1mA =

)p i

1 With a single eigenvalue of multiplicity m, and  for j=1,…,m-1. 

With N distinct eigenvalues, 

1, 0jA =

(,1 1,
1/ 1 /N

i p p i
A λ λ

= ≠
= −∏ . The step function is 

denoted with 1( . )a
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FMT modulation can be interpreted as a diversity transform that 
performs sub-channel time or spectrum spreading as a function 
of the prototype filter and the sub-carrier spacing, and in 
particular: 
! FMT modulation with optimal detection provides both a 
diversity gain, and a coding gain over uncoded single carrier 
transmission through a flat Rayleigh fading channel. The 

d ≤

diversity gain d equals the number of nonzero eigenvalues of 
e kD RG , while the product of the nonzero eigenvalues gives the 

coding gain. 
! The diversity gain satisfies the bound 

{ ( ), ( )}krank rankR G . If the channel is frequency min

selective but time-invariant, then '1 Pd N≤ ≤  with ' PN  equal to 
e aced channel taps. If the channel is 

frequency non-selective but time-variant, then  with 
(

th  number of non-zero T-sp
(1 d L≤ ≤

LT  equal to the prototype pulse duration.  
A detailed discussion is made in the next section, however, it is 
already clear that a sub-channel bandwidth expansion 

entially increases the frequency diversitpot y gain, while a sub-

 probability of error assuming 
first a time-inva nel, and then a 
time-variant flat major scenarios 
that

channel bandwidth compression (pulse duration expansion) 
increases the time diversity gain. 

5. Analysis of the Results 
In this section we dig into the

riant frequency selective chan
fading channel. These are two 

 can be considered representative respectively of wide band 
communications and narrow band communications.  
5.1 Time-Invariant Frequency Selective Channel 

If the channel is time-invariant frequency selective we can 
re-write the squared error distance as follows  

 2 2
0 ,0 ,0 0

1
( ) | |H H

MFB e k k i i
i

d k D
2 1PN

λ β
=

= = ∑α W κW α  (23) 
+

with  being the prototype pulse autocorrelation 

ma ements p p i

ii
= ∑κ G

trix with el *
,( ) ( ) ( )g iT g iT p′ T p T′= +∑κ

 we deploy
e the autocorrelation coefficients

 form (see [7]). 

− . 
When  a rect prototype pulse, a sinc prototype pulse, 
or a Gaussian prototype puls  
can be calculated in closed

The eigenvalues in (23) are the ones associated to the 
matrix 0

H H
e B B k kD G Φ G W κW . When 0

H
B BG Φ G  is diagonal, i.e., 

when the T-spaced channel taps are uncorrelated, they are 
independent of the sub-carrier index k. Since we consider 
uncorre elation am T-spaced channel 
taps can be introduced by the filters in the DAC-ADC. If this is 
the case, the matched filter error rate bound may differ across 
sub-channels. 

The results that we have obtained still hold with single 
carrier modulation. In such a case, 

2

lated scattering, corr ong the 

 those of the matrix 
. The matched filter performance bound

sub-carriers 

. It has 

rank 1 therefore the matrix has also rank
envalue equal to k trace

 2
, 1 0 0( ) | |H

MFB M N e e pp
d k D D α= = ∈

= = ∑α Iα
P

 (24) 

and the eigenvalues to be determined are
0

H
e B BD G Φ G  takes into 

account the shape of the pulse in the DAC-ADC as well as the 
correlation among T-spaced channel taps. When the number of 

goes to infinity, the squared distance reads 

 2
, 0 0( ) H

MFB M N e kd k D= →∞ = α F α  (25) 

where 2 2 2 2 2{[1,  ,  ,...,  ]}k k k Pj f T j f T j f N T
k toepz e e eπ π π− − −=F

kRF   one with the only 
nonzero eig ( )k( )λ = =RF  

2 ( )
,

kj f m n T
n mn m

R e π −= ∑ ∑ . h uncorrelated taps the MFB 
goes to the error-rate that is achieved in flat  

ls 

Wit
 fading since in such

a case for all sub-channe ( ) ( ) 1ktrace traceλ = = =
alized power del

r than that in flat fading (see 

RF R  with 
ay profile. Note that with correlate

taps, and a number of sub-carriers that goes to infinity, the 
average error-rate is not lowe [7]).  

The above results tell us that with multicarrier transmission 
through a given frequency selective channel we get diminished 
frequency diversity gains as the number of sub-carriers 
ncr

a norm d 

i eases, independently of the prototype pulse. However, an 
increase in the number of sub-carriers translates into a decrease 
of the detection complexity since the sub-channels tends to a 
have a flat frequency response. Clearly, for a given number of 
sub-carriers different pulses yield different performance. 
5.2 Time-Variant Frequency Non-Selective Channel 

If we assume the channel to be frequency nonselective (flat) 
but time-variant, we obtain 

   
2 1

2 2 2 ˆ
gN

Hd 2

1

ˆ ˆ| ( ) | | ( ) | | |MFB e e i i
i i

D iT g iT Dα λ β
∈ =

= = =∑ ∑α Gα
Z

 (26) 

with ˆ [ ( ),..., (

+

)]g gN T N Tα α= −α , 2 2ˆ {| ( ) | ,...,| ( ) | }g gdiag g N T g N T= −G  

an iλ  are the eigenvalues of ˆ  
ed distance is identical over all sub-channels. 

annel is fully uncorrelated (ergodic) we have 

ˆ ˆˆ ˆ[ ]H
e eD E Dαα G = RG .d  The 

squar
If the ch

2 1gN +  eigenvalues | ( )i eD g iTλ = h a rect 

prototype pulse we get one eigenvalue D N

2| . In particular wit

/i eλ =  with 
tiplicity mul N . It follows that an increase in the number of 

iers translates emporal diversity gains. If 
the number of sub-carriers goes to infinity the distribution (17) 
goes to 2 ( 1( )ed

F a a D

sub-carr  into increased t

) = − , i.e., the squared distance becomes 
deterministic (see [7]). Thus, the probability of error tends to 
the probability of error in the absence of fading (AWGN only).  

With r transmission we can write 
2 2

, 1 | (0) |MFB M N ed D α= = =  therefore there is only one eigenvalue 

Dλ

 single carrie

e= , and consequently there is no temporal diversity 
exp
static over the duration 
5.3 DM

pulse and the guard 
re 

pre

s 
propagation cond ve set of results 
can
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loitation. Recall that we have assumed the channel to be 
of the ADC filter. 

T with Cyclic Prefix and Conventional Detection  

In DMT-CP (OFDM with cyclic prefix) [9] if the channel is 
static over the duration of the prototype 
time is longer than the channel dispersion, no ICI and no ISI a

sent, and the detector simplifies to a one-tap equalizer. If the 
channel is time variant, ICI is introduced. The point here is that 
although conventional detection of DMT-CP is simple, it does 
not exploit the frequency diversity, and it suffers from the ICI 
introduced by a fast time-variant channel (see [7] for details).  

6. Numerical Examples 
In this section we report several numerical results for the 

average, and the distribution of the bit-error-rate  in variou
itions. A more comprehensi

 be found in [7]. We assume BPSK signaling, and square-
root-raised cosine filters in the DAC, and ADC, with a roll-off 
factor equal to 0.22. We choose the prototype pulse to be either 
rectangular in time (rect pulse), or rectangular in frequency 
(sinc pulse), or Gaussian (Gauss pulse). The sub-carrier spacing
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is minimal, i.e., M=N, T1=T0.  
In Fig. 1 we show the MFB bit-error-rate distribution as a 

function of the sub-carrier index assuming ES/N0=11dB and a 
Guassian prototype pulse with normalized bandwidth 0.33B = . 
In the top figures the channel is assumed to experien
stat

ce quasi-
ic (time-invariant over the prototype pulse duration) 

Rayleigh fading with a one-sided exponential power delay 
profile with rms delay spread 0 6.5Tτ = . As it can b n 
the top plots of Fig. 1 there is some variability in the bit-error 
rate distribution across the sub-channels. The outermost 
channels exhibit worse BER distribution. Further, as the number 
of sub-carriers increases from 9 to 129 the frequency diversity 
gain diminishes, as a result of a sub-channel bandwidth 
compression.  

In the bottom plots of Fig. 1 we assume time-variant flat 
fading with a Jakes' Doppler spectrum having normalized 
Doppler 0.009df T = . The plots show that the bit-error-rate 
distribution is t

e seen i

itation.

ernoff upper bound. The bandwidth is 
W=

 it 
imp

t with ideal 
equalization both a div  gain are obtainable in 
time-variant frequency The Chernoff bound 
com

atched filter performance 

[4] r probability calculation for multibeam Rayleigh 

[6]  

[7] one modulation in 
fading channels”, subm.  to IEEE Trans. Wireless mm., April 2003. 

 

TR 101.112, ETSI, 1998. 
 

Fig. 1. BER distribution as a function of the sub-carrier index with Es/N0=11 dB 
and Gaussian sub-channel pulse. Frequency selective Rayleigh fading channel 
with exponential power delay profile (top plots). Flat Rayleigh fading channel 
with Jakes' Doppler spectrum (bottom plots).   

Fig.2. Average BER in ITU PB channel with quasi static fading and bandwidth 
W=3.84 MHz. Solid curves: exact value. Dashed curves: Chernoff upper bound.   

Fig.3. Average BER in flat fading with Jakes' Doppler spectrum and W=24.3 kHz. 
Solid curves: exact value. Dashed curves: Chernoff upper bound.  
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he same across the sub-channels. Now, as the 
number of sub-carriers increases the distribution of the bit-
error-rate improves as the consequence of increased time-
diversity explo  

In Fig. 2 we show the average BER for a frequency 
selective channel with the ITU Pedestrian B profile [10]. Solid 
curves report the exact MFB while the dashed curves 
correspond to the Ch

3.84 MHz. OFDM with cyclic prefix and conventional 
detection performs the worst. The MFB BER performance is the 
best for the rect pulse. As the number of sub-carriers increases 
the performance worsens for all the pulses that are considered. 
Note that asymptotically the Chernoff bound curves have the 
correct slope and thus they give the correct diversity gain.    

In Fig. 3 we show the average BER for a fast flat Rayleigh 
fading channel with a bandwidth of W=24.3 kHz. OFDM with 
conventional detection exhibits a high error floor.  The MFB 
BER performance is the best for the  gauss pulse, and

roves as the number of sub-carriers increases. 

7. Conclusions 
We have computed the exact matched filter bound 

performance of FMT modulation. It shows tha
ersity and a coding
 selective fading. 

puted in [6] gives, indeed, the correct diversity gain.       
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