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Abstract— In this paper we describe several space-time multitone 
architectures for transmission with multiple antennas over flat 
and frequency selective fading channels. The idea behind these 
schemes is to perform data multiplexing over both the spatial, 
and the frequency domain. Two of these architectures are 
obtained by extending the filtered multitone (FMT) modulation 
concept to the multiple antenna scenario. Another novel 
architecture is based on the concept of deploying some form of 
cyclically prefixed discrete multitone (DMT) modulation. The 
architectures aim at orthogonalizing the time dispersive channel, 
and possibly the overlapping spatial channels. The efficient 
implementation can be performed via fast Fourier transform 
(FFT), and low rate polyphase filtering. These architectures can 
be concatenated with outer channel coding or data spreading for 
space-frequency diversity exploitation. 

Keywords - Space-time coding, diversity, fading channels, filtered 
multitone modulation, discrete multitone modulation, OFDM. 

I.  INTRODUCTION 
 It is well known that multiple-transmit multiple-receive 
antenna architectures can increase the capacity of wireless 
communication systems [3]. To approach the capacity limits 
we need to deploy powerful space-time coding schemes that 
exploit the spatial-temporal diversity of rich scattering 
environments. Several space-time coding schemes have been 
proposed initially for transmission over flat fading channels, 
for instance, the well known space-time trellis codes (STTC) 
in [8], or the space-time bit-interleaved codes (STBIC) in [9]. 
Although, for low transmission rates, and small number of 
transmit antennas good STTC and STBIC have been found, 
the space-time coding problem becomes more complicated if 
very high data rates have to be achieved, i.e., we deploy a high 
number of transmit antennas with high order modulation. On 
one hand, this is due to the difficulty of designing coding 
schemes that are capable of achieving full spatial diversity and 
delivering high coding gains. On the other hand, the optimum 
decoding algorithm that is based on the maximum-likelihood 
principle is characterized by a complexity that limits the 
practical implementation. Aiming at simplify the decoding 
complexity several space-time block codes with simple 
decoding have been proposed, e.g., the codes in [7], and the 
simple transmit diversity scheme by Alamouti. 
  When transmission is over frequency selective fading  

TABLE I
ACRONYMS AND NOTATION

ST-CP-DMT conventional space-time cyclically prefixed discrete
multitone modulation (space-time OFDM)

ST-FMT space-time filtered multitone modulation.
O-ST-CP-DMT orthogonal space-time cyclically prefixed discrete

multitone modulation
O-ST-FMT orthogonal space-time filtered multitone modulation

NT Number of transmit antennas.
M Number of tones.
N=M+µ µ ≥ 0
T Transmission period.
W=1/T Nominal overall bandwidth.
fk Tone (sub-carrier) k.
∆f=1/MT Tone spacing.
T0=NT Sub-channel data period.
g(nT) Prototype sub-channel filter.
Nb Number of bits per complex data symbol ak(lT0).
ak(lT0) Data symbol transmitted at time lT0 over sub-channel k.
at,k(lT0) Data symbol transmitted over antenna t and sub-channel k

 
channels, the same space-time codes proposed for flat fading 
channels can be deployed. However, equalization is required  
to counteract the intersymbol interference, which translates 
into increased decoding complexity [1], [12]. In order to 
simplify the equalization task, it has been proposed to use 
cyclically prefixed orthogonal frequency division multiplexing 
(OFDM) over each transmit antenna, referred to as space-time 
cyclically prefixed discrete multitone (ST-CP-DMT) 
modulation in this paper. This allows for obtaining a flat 
frequency response for each transmit antenna link. Then, we 
can obtain diversity and coding gains via trellis coding [6], or 
bit interleaved coding [5] across the transmit antennas. In the 
latter case, decoding is performed through the iterative 
concatenation of a soft-in soft-out bit demapper with a soft-in 
soft-out channel decoder. Demapping can be performed 
independently over the OFDM sub-channels. However, 
optimal ML/MAP demapping still has a complexity that 
increases exponentially with the number of transmit antennas 
[9] because each sub-channel sees the superposition of the 
data symbols simultaneously transmitted by the antennas.  

In this paper we describe several space-time multitone 
architectures for transmission over multiple antennas. They 
aim at orthogonalizing the time dispersive channel, and 
possibly the overlapping spatial channels. In other words, the 
goal is to transform the multiple antenna, ISI channel in a 
number of non-overlapping sub-channels. The idea behind 
these schemes is to perform data multiplexing over both the 
spatial and the frequency domain. For clarity, we list in Table 
I the acronyms that will be used. First, we review conventional 
space-time cyclically prefixed discrete multitone (ST-CP-

Orthogonal Space-Time Discrete Multitone and 
Space-Time Filtered Multitone Coded Architectures 
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DMT) modulation. Second, we devise a scheme that is 
obtained by extending the filtered multitone (FMT) 
modulation concept [2] to the multiple transmit antenna 
context. It is referred to as space-time filtered multitone (ST-
FMT) modulation. Then, we devise two other space-time 
architectures whose objective is to orthogonalize not only the 
ISI channel but also the overlapping multiple antenna 
channels. They work both for flat fading channels and for 
frequency selective fading channels. They are respectively 
referred to as orthogonal space-time filtered multitone (O-ST-
FMT) modulation, and orthogonal space-time cyclically 
prefixed discrete multitone (O-ST-CP-DMT) modulation.  

The concept behind FMT modulation over single input 
channels (single transmit antenna) is to transmit a number of 
low rate data sequences over sub-channels that are shaped 
with an appropriate filter centered on a given sub-carrier [2], 
[13]. Discrete multitone modulation (DMT) is a particular 
implementation that deploys rectangular time domain filters. 
DMT is also referred to as OFDM. The design of the sub-
channel filters, and the choice of the sub-carrier spacing in an 
FMT system aims at subdividing the spectrum in a number of 
sub-channels that do not overlap in the frequency domain. In a 
DMT system, the orthogonalization of the ISI channel is 
obtained with the insertion of a cyclic prefix longer than the 
channel time dispersion.  

All the architectures here described can be efficiently 
implemented via FFT and low-rate polyphase filtering. In ST-
FMT data detection may require sub-channel equalization in 
the presence of frequency selective fading. However, its 
complexity is low since the equivalent sub-channel impulse 
response spans a small number of data symbols. In O-ST-CP-
DMT full space-time orthogonalization is obtained, such that 
the detector simplifies into a one-tap equalizer per sub-channel 
as in conventional OFDM over single input-single output 
channels. To the author's knowledge O-ST-CP-DMT is novel.  
 The multitone architectures herein described can be 
concatenated with outer coding. A good option is to use bit-
interleaved codes. In this case decoding can be performed via 
iterative bit demapping and channel decoding. Another idea to 
exploit diversity is to use outer direct sequence spreading [4].  

II. CHANNEL MODEL 
We assume to deploy NT transmit antennas, and a single 
receive antenna. The multiple receive antenna scenario is a 
simple extension. The space-time architectures that we 
describe have an efficient discrete-time implementation. The 
filters in the digital-to-analog converter at the transmitter, and 
the analog-to-digital converter at the receiver are included in 
the equivalent discrete-time channel impulse response. The 
channel is assumed to be frequency selective such that the 
equivalent impulse response for the t-th antenna link is 
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T  is the transmission period. The tap gains are Rayleigh 
faded, and are assumed to be time-invariant over one or more 
transmission frames of duration 0T NT=  each. Further, we 
assume PN N< .  
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Fig. 1. Conventional Space-Time CP DMT system. 
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Fig. 3. Orthogonal Space-Time CP DMT system. 

M
T

IF
FT C
P

P
/S

M
T

IF
FT C
P

g1,1(lT0)

g1,M(lT0)

P
/S

gNT,1(lT0)

gNT,M(lT0)

a1,1(lT0)

a1,M(lT0)

aNT,1(lT0)

aNT,M(lT0)

x1(nT)

xNT(nT)

 
Fig. 4. Orthogonal Space-Time Critically Sampled FMT transmitter. 

III. CONVENTIONAL ST-CP-DMT: SPACE-TIME 
CYCLICALLY PREFIXED DISCRETE MULTITONE MODULATION 

In conventional ST-CP-DMT transmission, cyclically prefixed 
DMT modulation is deployed over each antenna [5] (see Fig. 
1). For each antenna of index  t=0,…,NT-1 we take a block of 
M data symbols ,

0( )t ka lT , k=0,…,M-1, we apply an M point 
inverse discrete Fourier transform (IDFT), we add a cyclic 
prefix of length µ , and finally we transmit the output 
N M µ= + symbols. Each data symbol ,

0( )t ka lT  is assumed to 
belong to a complex constellation, e.g., M-QAM, and is 
obtained by mapping bN  bits. The block of symbols ,

0( )t nx lT , 
0,..., 1n N= − , transmitted by antenna t  with period 

0T NT= , is generated as follows 

 
21 ( ), ,

0 0 0
0

( ) ( ) ( )
M j k nt n t t k M

k
x lT x lT nT a lT e

π µ− −

=

= + = ∑ . (2) 

The resulting transmission bit rate is 0/ST CP DMT T bR MN N T− − =  
bits/s.     
 With the channel model (1), and with the assumption of 
using a cyclic prefix longer than the channel time support, the 
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received signal reads for ,...,l = −∞ ∞ , and ,..., 1n Nµ= −  

 1 ,
0 0 00 0

( ) ( ) ( )T PN N t t n p
pt p

y lT nT x lT lT nTα η− −
= =

+ = + +∑ ∑  (3) 

where ( )nTη  are assumed to be i.i.d. Gaussian random 
variables with zero mean.  

Now, demodulation is accomplished by dropping the 
received samples that correspond to the cyclic prefix of each 
received block, and applying an M-point discrete Fourier 
transform (DFT) to obtain for the k̂ -th sub-channel output 

1
ˆ ˆ ˆ ˆ, ,

0 0 0
0

( ) ( ) ( )
TN

k t k t k k

t
z lT H a lT w lT

−

=

= +∑ ,  
2 ˆˆ,

0

PN j pkt k t M
p

p
H e

π

α
−

=

= ∑  (4) 

with ˆ
0( )kw lT  being i.i.d. zero mean Gaussian random 

variables. That is, each DFT output sees a flat faded channel. 
However, although no intersymbol interference (ISI) is 
introduced, the TN spatial channels do overlap. Therefore, to 
recover the transmitted bits, the optimal maximum likelihood 
demapper has to perform, for each of the M  frequency sub-
channels, bit demapping jointly over the TN  spatial channels. 
Its complexity grows exponentially with the number of 
transmit antennas. Several demapping algorithms are 
described in [9], [10], [11]. Finally, note that if the channel is 
flat there is no point to deploy ST-CP-DMT.    

IV. ST-FMT: SPACE-TIME FILTERED MULTITONE 
MODULATION 

A different approach is to use FMT modulation [2] instead of 
CP-DMT modulation over each transmit antenna. The 
difference relies on the presence of sub-channel shaping 
pulses. A general architecture is shown in Fig. 2. The discrete-
time signal that is transmitted by antenna t is obtained as 
follows 
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where ( )g nT is the prototype pulse that is used to shape the 
sub-channels, while /kf k MT= is the k-th sub-channel tone. 
An efficient FFT based implementation is possible resulting in 
a space-time extension of the one described in [2]. If 
M N= the scheme is referred to as critically sampled, 
otherwise if N M>  the scheme is referred to as non-critically 
sampled. The prototype pulse is designed to be frequency 
concentrated, so that sub-channels do not overlap in 
frequency. As an example, we can use square-root-raised 
cosine pulses, or Gaussian pulses [13]. The choice 
N M> allows for a better sub-channel separation.   
 The resulting transmission bit rate is 0/ST FMT T bR MN N T− =  
bits/s, and can be higher than that in ST-CP-DMT depending 
on the choice of N M≥ , and consequently of 0T . 
 With the channel model (1), the received signal reads 
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Demodulation is accomplished by first deploying a bank of 
filters matched to the sub-channel transmit pulses. Then, we 

sample the outputs at rate 01/T  to obtain for the k̂ -th matched 
filter (MF) output  
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Using Parseval theorem it can be shown that if the sub-channels 
do not frequency overlap, relation (7) differs from zero only 
for ˆk k= . This  holds true if | ( ) | 0G f =  for | | 1/(2 )f MT> . 
Under such hypothesis that can be met with the appropriate 
system design we obtain that 
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According to (8), the k̂ -th sub-channel output sees some ISI 
contribution. Further, the TN  spatial channels overlap. 
Therefore, to accomplish bit demapping we need to run a bank 
of M  equalizers each performing joint spatial, and temporal 
equalization. The optimal ST-MAP equalizer is described in 
[12]. More in general, optimal multicarrier MAP equalization 
is described in [13]. 

The interesting feature in this architecture is that the 
number of intersymbol interferers is small (note that each sub-
channel has taps spaced by multiples of T0). Thus, each 
equalizer can have moderate complexity depending on the 
transmission bandwidth, channel time dispersion, and number 
of tones. The fact that no cyclic prefix is deployed can 
translate in higher spectral efficiency than with ST-CP-DMT.  

V. O-ST-CP-DMT: ORTHOGONAL SPACE-TIME 
CYCLICALLY PREFIXED DISCRETE MULTITONE MODULATION 

In this section we propose a novel (to the author’s knowledge) 
scheme that is still based on the concept of deploying some 
form of cyclically prefixed DMT modulation. We start from 
the observation that in both conventional ST-CP-DMT, and 
ST-FMT the spatial channels do overlap. Indeed this allows 
for increasing the peak transmission rate. However, the 
optimal detector/equalizer has a complexity that grows 
exponentially with the number of transmit antennas. Further, 
note that there is no point to deploy ST-CP-DMT over a flat 
faded channel.  The scheme that we describe in this section 
aims at orthogonalizing the spatial channels, and can be used 
in both flat, and frequency selective channels. We refer to this 
scheme as O-ST-CP-DMT (see Fig. 3).  
 We start by taking a block of 1T PM N N≥ + − data 
symbols 0( )ka lT , k=0,…,M-1. Then, we generate TN  blocks 
of N M µ= +  symbols each, as follows  

 
2 ( )1,

0 0 00
( ) ( ) ( )

j k n tMt n k M
k

x lT x lT nT tT a lT e
π µ− −−

=
= + − = ∑  (9) 

for t=0,…,NT-1, and n=0,…,N-1. Each block is transmitted 
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over a distinct antenna. The above operation corresponds to 
apply a cyclic prefix over both time and space. This can be 
better understood if we explicitly write (9) in a TN N× matrix 

1 1 0 1 1

1 2 1 0 2

1 1

... ...

... ...
... ... ... ... ... ... ... ...
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T T T T

M M M M

M M M M M
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whose rows are transmitted over distinct antennas, and where 
1 2 /

00
( )M k j nk M

n k
x a lT e π−

=
= ∑ . The resulting transmission bit rate 

is 0/O ST CP DMT bR N M T− − − =  bits/s. Note that in flat fading 
channels we can set 0µ = , and TM N= .  
 With the channel model (1), and with the assumption of a 
cyclic prefix that satisfies the relation PNµ ≥ , the received 
signal reads for ,...,l = −∞ ∞ , and ,..., 1n Nµ= −  
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Now, demodulation is accomplished by dropping the cyclic 
prefix (the samples of the l-th block corresponding to index 

0,... 1n µ= − ), and applying an M-point DFT to obtain  

ˆ ˆ ˆ ˆ
0 0 0( ) ( ) ( )k k k kz lT H a lT w lT= + ,  
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Therefore, each DFT output sees a flat faded channel, and the 
TN spatial channels do not overlap. In other words, we have 

othogonalized both the ISI channel, and the TN spatial 
channels. The complexity of the optimal maximum likelihood 
bit demapper does not grow as the number of antennas grows.  
 Now the question is: what is the advantage of such a 
scheme ? The advantage is that transmission takes place over 
M non overlapping channels. Further, it can be proved that 
the rank of the MIMO-ISI channel remains unchanged, and 
therefore the achievable diversity gain. In particular if the 

T PN N channel taps t
pα  are independent, then the rank of the 

M M× correlation matrix whose entries are 
*

1 2[ ]k kE H H  is 

T PN N . Indeed, to exploit diversity we need to deploy some 
form of coding. We address this problem in Section VII. 

VI. O-ST-FMT: ORTHOGONAL SPACE-TIME FILTERED 
MULTITONE MODULATION 

A different way to achieve spatial, and temporal 
orthogonalization is to use a variation of the ST-FMT 
modulation scheme of Section IV. It is obtained by assigning 
distinct tones to distinct antennas. If the sub-channels do not 
frequency overlap, then distinct spatial channels occupy 
distinct portions of the available spectrum, thus they don't 
overlap. We refer to this scheme as O-ST-FMT. In formulae, 
the signal transmitted by antenna t can be written as  

22
1 ,

0 00
( ) ( ) ( )T T

j nkj nt M Mt t kM
k l

x nT e a lT g nT lT e
ππ

− ∞

= =−∞
= −∑ ∑ (12) 

if we assume to interleave the tones across the antennas, and 

we denote the number of tones per antenna  with MT=M/NT. 
The resulting transmission bit rate is 0/O ST FMT bR N M T− − = . It 
can be higher than that in O-ST-CP-DMT depending on the 
choice of N, and consequently of T0.    
 From (12) an efficient polyphase implementation can be 
derived. For example, assuming a critically sampled system, 
we have that M N=  such that the sequence of symbols 
transmitted by antenna t reads 
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for ,...,m = −∞ ∞ , 0,..., 1n M= − . The implementation is 
shown in Fig. 4. Now, we need to deploy an IDFT with TM  
points per antenna. The output block of length TM is 
cyclically extended to obtain the block ,

0( )t nA lT of length M . 
Then, low-rate filtering with ,

0( )t ng lT  is performed. Finally, 
P/S conversion follows.  
 Similarly, to the ST-FMT modulation case, demodulation 
is accomplished by first deploying a bank of M filters 
matched to the sub-channel transmit pulses. With the channel 
model (1), under the assumption of non overlapping (in 
frequency) sub-channels, and under the assumption of 
deploying distinct tones over distinct antennas, the matched 
filter output sample reads  

 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , ,
0 0 0 0 0( ) ( ) ( ) ( )t k t k t k t kz mT a lT mT lT w mTβ= − + . (14) 

That is, the matched filter output of index ˆˆ( , )t k , for 
ˆ 0,..., 1Tt N= − and ˆ 0,..., 1Tk M= − ,  exhibits a contribution 

only from the frequency sub-channel of index k̂ , and the 
spatial channel of index t̂ . Therefore, also in this architecture 
we have  orthogonalized the TN  spatial channels. However, 
some residual ISI can be present which requires some form of 
temporal equalization, i.e., a bank of independent single 
channel equalizers. 

VII. CHANNEL CODING 
In order to exploit spatial and frequency diversity we need to 
use some form of channel coding in all space-time 
architectures that we have described. Coding has to take place 
across the space-frequency sub-channels. It is important to 
note that while in ST-CP-DMT and ST-FMT the spatial 
channels overlap, in O-ST-CP-DMT and O-ST-FMT the 
spatial channels are orthogonalized. For all architectures a 
possible good coding approach is to use a space-time bit-
interleaved encoder [9]. Decoding can be performed via the 
turbo approach that is based on the iterative concatenation of 
symbol demapping, de-interleaving, and channel decoding. In 
ST-CP-DMT we have M flat faded sub-channels each carrying 
the simultaneous transmission of TN  data symbols. Decoding 
can be performed with the iterative ST-MAP algorithms in [9]. 
In ST-FMT we have M sub-channels each carrying the 
simultaneous   transmission   of  TN   data   symbols  and  each  
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Fig. 5. Performance of O-ST-CP-DMT with outer data spreading. M=64, 
µ=4, 4-PSK modulation, two receive antennas with ZF detection and 
MRC combining. Up to NT=4 transmit antennas. 

 

exhibiting moderate ISI. Decoding can be performed with the 
iterative ST-MAP equalization algorithms in [12], [13]. In O-
ST-CP-DMT we have M flat faded sub-channels each carrying 
a single symbol from a given antenna. Similarly, in O-ST-
FMT the spatial channels do not overlap, however some 
moderate ISI can be present. We emphasize that while for ST-
CP-DMT and ST-FMT the complexity of the demapping stage 
grows exponentially with the number of antennas, in the other 
two schemes the complexity of each sub-channel demapper is 
independent from the number of antennas. The penalty is that 
if we fix the data modulation order in the first two schemes the 
(peak) transmission rate increases linearly with the number of 
transmit antennas, while in the latter two schemes is 
independent of the number of transmit antennas. However, 
this doesn't necessarily mean that the spectral efficiency is 
lower in practical scenarios. It has also to be noted that 
depending on the system design, 0T  is not the same for the 
four schemes. Typically, a sufficiently long cyclic prefix is 
deployed in the DMT schemes so that, assuming bN  to be 
fixed, we have that O ST CP DMT O ST FMT ST CP DMT ST FMTR R R R− − − − − − − −≤ ≤ ≤ . 
To increase the transmission rate in the latter two schemes we 
can use higher order modulation, e.g., map T bN N  bits per 
modulated symbol. 
A. Orthogonal Spreading 
Another idea to exploit diversity in the architectures that we 
have described, is to use data spreading across the space-
frequency sub-channels [4]. For space limitations we describe 
it for O-ST-CP-DMT only. Let us consider an orthonormal 
matrix, e.g., Walsh-Hadamard matrix, of size M. Let ( , )c i k  
for k=0,…,M-1 be the elements of the i-th row. Let 0( )ib lT , 
i=0,…, M-1, be a block of data symbols to be transmitted. 
Then, we apply the orthonormal transform to generate the 
block of symbols 1

0 00
( ) ( ) ( , )Mk i

i
a lT b lT c i k−

=
= ∑ , k=0,…, M-1, 

that are transmitted by the O-ST-CP-DMT modulator. 
According to (11) the output of the demodulator now reads  

0 0 0( ) ( ) ( , ) ( )k k i k
i

z lT H b lT c i k w lT= +∑ . Assuming knowledge 

of the channel weights, we can recover the transmitted data 
symbols, for instance, with simple coherent de-spreading (ZF 
equalization) as follows  

 
1 *ˆ 2 *

0 0
0

ˆ( ) ( ) / | | ( , )
M

k k k k
despr

k
z lT z lT H H c k k

−

=

=∑  (15) 

The above procedure does not add redundancy, i.e., we keep 
the bit rate equal to 0/bMN T  bits/s. It implements a form of 
space-frequency data spreading. It is applied for diversity 
exploitation. In Fig. 5 we report BER performance for several 
scenarios assuming double receive diversity and maximal ratio 
combining. Deep performance improvements are found both 
in flat fading and in frequency selective fading. 

VIII. CONCLUSIONS 
We have proposed several ST multitone architectures whose 
goal is to orthogonalize the time dispersive, with multiple 
transmit antennas channel. They can be concatenated with 
outer codes and/or direct sequence spreading. ST-FMT and O-
ST-CP-DMT are an interesting option for transmission over 
uplink multiuser asynchronous channels (see [14]). 
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