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Abstract
The performance of space-time bit-interleaved codes over block
fading channels is considered. Decoding is based on iterative
demapping and decoding. The demapper delivers soft information
to the decoder, and accepts feedback from the decoder. Schemes
with both soft and hard feedback are described. In particular, we
consider the deployment of bit interleaved block/convolutional
codes with memoryless mappers. Each block of coded
information is transmitted over a number of bursts that
experience independent fading. Code design criteria are devised
through the analysis of the asymptotic pairwise error probability
(i.e., with perfect extrinsic knowledge), and of the maximum
attainable diversity bound. Several coding schemes that achieve
full asymptotic diversity with convolutional codes of minimum
complexity are given. Performance results from simulations show
that convergence to the asymptotic error rate curves is achieved.

1. Introduction
In this paper we consider a space-time bit-interleaved

coded wireless system that deploys multiple transmit-
receive antennas. Coding and modulation are kept
separated by a bit-interleaver, which extends the bit-
interleaved coded modulation concept [1] from SISO
channels to MIMO channels. This coding approach was
considered in [2] and [3] over both static and fully
interleaved fading channels. It differs from the space-time
trellis coding [5] approach, and the orthogonal block
coding [6] approach, since coding and modulation are not
combined in a single entity.

In this work we consider transmission of coded
information by multiple antennas over a small number of
bursts that experience uncorrelated frequency non-selective
fading. This is a realistic model for coded systems that
deploy slow frequency hopping such as the GSM/EDGE
(enhanced data rates for GSM evolution) system.  In more
detail, a block of coded bits, generated by a block or
convolutional encoder, is appropriately interleaved, parsed
into a number of antenna bit streams, and formatted into a
number of bursts. Transmission by the antennas is
simultaneous after mapping of the bits into M-PSK/M-
QAM complex symbols. The bursts are transmitted
sufficiently apart in time or frequency, such that, under the
hypothesis of low mobility, the fading is static over a given

burst, but uncorrelated among distinct bursts.
Although random symbols are transmitted over

overlapping and independent fading channels, reliable
decoding is possible through an iterative decoding
procedure. First the received samples are demapped by
computing soft information (e.g., a posteriori probabilities)
of the coded bits. Then, after de-interleaving, the soft
information is delivered to the decoder. By exploiting the
redundancy of the coded bits, the decoder can provide
feedback information on the coded bits to the demapper.
Therefore, multiple demapping and decoding stages can be
run following the turbo demapping concept [7], [8]. We
consider either the case of providing soft or hard feedback.
In the former case a MAP/BCJR decoder [9], [10] is
required. In the latter case only a conventional hard output
decoder (e.g., Viterbi decoder) is needed, which greatly
simplifies complexity.

The deployment of bit-interleaved codes in a layered
space-time architecture was considered also in [11].
However, the demapping approach herein considered is
based on optimal joint demapping of the overlapping
signals which allows decoding with single receive
diversity. The application of interleaved space-time codes
over frequency selective (i.e., ISI) fading channels has
been addressed in [3] and [4], where decoding based on
optimal iterative equalization is proposed.

We gain insight into the code construction criteria by
studying the asymptotic pairwise error probability that is
achieved when perfect extrinsic knowledge is available,
and by extending the Singleton bound [12] to the multiple
transmit antenna scenario under consideration.  This bound
shows that the maximum attainable transmit diversity is
limited to a value lower or equal to the product of the
number of transmit antennas and the number of
independent bursts. It is a function of the code rate and
modulation order. Further, we show that the distance
properties of certain bit sub-sequences, and the bit-to-
symbol mapping rule, play a key role in the maximization of
the diversity gain and the coding advantage.

From computer search, several convolutional codes that
achieve full asymptotic diversity with minimum constraint
length have been found. The performance of several of these
interleaved codes is evaluated by simulation.
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2. System Model

2.1. Transmitter and Channel Model

A block of information bits (Fig.1) ]...[ 1 bNb bb = is either
block or convolutionally encoded into a block of coded bits

]...[ 1 cNc cc = . The block of coded bits is bit-interleaved

and parsed into NT blocks ]...[ 1
t
N

tt
d

d dd = , t=1,...,NT. Each
antenna block is arranged into NB bursts of ND=Nd /NB bits
each, ]...[ ,,

1
, lt

N
ltlt

D
d dd = . The bits of each burst are

memoryless mapped into complex symbols belonging to
the M-PSK or M-QAM signal set with average power one.

Let MN 2log= be the number of bits per symbol, then
the complex symbol that is transmitted by antenna t at time
instant kT on burst l, is a function of the mapping rule
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Assuming to deploy Nyquist filtering, and transmission
over a frequency non-selective fading channel, the k-th
matched filter output sample of burst l, and receive antenna
r, r=1,...,NR, can be expressed as
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The equivalent channel impulse response during burst l of
the link between the receive antenna r and the transmit
antenna t, is given by ltrh ,, . It is here assumed to be
complex Gaussian with zero mean and unit-variance
(Rayleigh fading model). No channel variation is assumed
over a given burst, however distinct bursts experience
independent fading. Further, the fading is uncorrelated
across distinct antenna links. In (2) lr

kn ,  is the AWGN
contribution that is assumed to have mean zero, variance
N0, and to be independent across the receive antennas.

2.2. Iterative Decoder
Decoding is based on concatenating in an iterative

fashion a demapper with a decoder (Fig. 2). The goal of the
demapper is to compute soft information on the coded bits
(either a posteriori probabilities, or log-likelihoods, or log-
likelihood ratios) by observing NBNS samples from NR
antennas. After re-arranging and de-interleaving, the soft
information is fed to the decoder. The goal of the decoder
is to recover the block of transmitted information bits.
Further, we assume it can provide feedback information on
the coded bits to the demapper. Such feedback can be
either soft or hard. In the former case a MAP/BCJR [9],
[10] decoder can be deployed. In the latter case a
conventional decoder (e.g., Viterbi decoder ) can be used.

The feedback information from the decoder can be re-
used in a new demapping stage to improve the quality of
the soft information provided by the demapper. This helps

to de-couple the signals from overlapping channels.
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Fig.1. Bit-interleaved space-time coded transmitter.
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Fig.2. Iterative decoder. Feedback from the decoder can be soft or hard.

3. Demapping
The demapping algorithm is a function of whether soft

or hard feedback is available. In either case the demapper
computes the a posteriori probabilities of the coded bits by
observing the channel samples from the NR antennas
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for all TNt ,...,1= , BNl ,...,1= , SNk ,...,1= , Ni ,...,1= .
We further assume to have perfect knowledge of the
channel state information.

It is convenient to operate in the logarithm domain by
exchanging between the demapper and decoder log-
likelihoods or log-likelihood ratios, respectively defined as
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3.1. Demapper with Soft Feedback
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according to (neglecting constant factors)
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where, for instance, )1(+D  is the set of all possible bit

vectors ]
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have bit 1, +=+
lt

iNkd . By taking the logarithm of (6), the a
posteriori log-likelihoods can be approximated as
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The a priori probabilities/log-likelihoods of the coded bits,
are approximated with the soft information provided by a
soft-out decoder in the previous decoding iteration. Equally
likely bits are assumed at the first demapping step, such
that the product of the a priori probabilities is a constant.

To minimize the correlation with previously computed
information, extrinsic information is exchanged between
the demapper and decoder [2], e.g., in (6) we neglect the a
priory probability of the bit under consideration.

Note that samples from multiple receive antennas are
combined in a maximal ratio combining fashion. Further,
the soft outputs are computed by considering all possible
combination of simultaneously transmitted symbols (i.e.
joint demapping of multiple transmitted signals).

3.2. Demapper with Hard Feedback
When hard feedback is available from the decoder, the a

priori probabilities on the coded bits can assume only the
value 0 or 1. Therefore, (6) and (7) simplify to
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determined by the codeword the decoder decides in favor
of, with the exception of bit lt

iNkd ,
+ that is set to 1± .

At the first demapping iteration we assume equally
likely bits. Thus, we apply (6) or (7) and we neglect the a
priori term.  In the following iterations, we apply (8) or (9)
by assuming a priori knowledge of all bits except the one
for which we are computing the a posteriori probability.

If we deploy convolutional codes, decoding can be
performed with the Viterbi algorithm, and the hard
feedback is obtained by re-encoding the information bit
sequence we decide in favor of.

4. Performance Analysis
The exact performance analysis is complicated due to

iterative processing. We can gain insight by assuming that

at the final iteration the feedback from the decoder to the
demapper is exact [2]. A similar approach was followed
also in [8] for the analysis of iterative decoding in single-
input single-output channels. Bounds on the maximum
attainable diversity (asymptotic diversity) can be derived
by studying the pairwise error probability (the probability
of transmitting the coded bit sequence c  but erroneously
deciding in favor of c� ), or extending to the multiple
transmit antennas scenario the Singleton bound [12].  

A Chernoff bound on the pairwise error probability was
derived in [2] under the exact feedback assumption, and
considering the transmission of coded information over a
single burst that experiences either static or completely
temporally uncorrelated fading. Here, we generalize those
results by considering transmission over a number of
independently faded bursts each experiencing static fading.

4.1. Asymptotic Pairwise Error Probability
The pairwise error probability is bounded as
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Eq. (12) gives the normalized squared Euclidean distance
between the k-th constellation symbol that is transmitted by
antenna t, over burst l, and the symbol that may differ only
in bit lt

nNkd ,
+ . It follows that (11) is the squared Euclidean

distance between the symbol sequences associated to the
pairwise error event, computed only over the sub-portion
transmitted by antenna t on burst l, and assuming that they
might differ in one bit at the time. Note that there is a one
to one correspondence between coded bit sequences c and
coded-interleaved bit sequences d.

Let nlt
Ed ,,

min, be the minimum squared Euclidean distance
between any pair of constellation symbols that differ only
on bit in position n (the minimum being computed for all
possible other bits). Further, let )�,(,, ccd nlt

H be the Hamming
distance between the codewords c  and c�  (computed over
the bits transmitted on antenna t, burst l, and bit position n)
then (10) can be further bounded as follows
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For high SNRs (13) can be written as

RR LNLN
S ccNEccP −− χ≤→ )�,()4/()�( 2

0 (14)
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, )�,()�,( , i.e., nonzero bit squared

Euclidean distances between the portions of the two
codewords that are transmitted by antenna t on burst l.

From (14), we can see that a diversity gain of LNR and a
coding advantage of RLNcc )�,(2χ is achieved over an uncoded
system with single transmit and single receive diversity.

4.2. Singleton Bound
Under the exact feedback assumption the following

bound on the maximum transmit diversity L applies
(Singleton bound [12])

 )log/(1 2 MRNNL TB −+≤ (16)

where M is the modulation order, and R is the transmission
rate in Bits/s/Hz.

5. Space-time Bit-interleaved Code Construction
Guidelines

Guidelines for the design of an interleaved space-time
coded system can be derived from the analysis of Section
4. Although the analysis is based on the assumption of
exact feedback, extensive computer simulations have
shown that asymptotically the system with iterative
decoding behaves as predicted by theory (Section 6). In
particular with soft feedback and few decoding iterations
the block error rate curves practically converge to the
curves obtained with perfect extrinsic knowledge (referred
to as block error rate floor) for moderate SNRs. With hard
feedback we have found that the performance is improved
by running multiple decoding iterations. However, due to
error propagation, the convergence to the error rate floor,
as a function of the SNR, is much slower.

From (14), a maximum diversity order of LNR can be
achieved. A necessary condition for full transmit diversity
L=NBNT is that any two codewords have nonzero
Hamming distance when computed over the portion
transmitted on a given burst and given antenna, for all
bursts and antennas. Clearly, this Hamming distance
depends upon the encoder, and the bit-interleaver/parser.

From (16), the shape of the constellations, and the
mapping rule, do not affect the maximum attainable
diversity. For a given transmission rate, if we increase the
modulation order we can increase the attainable transmit
diversity up to the limit given by NBNT.

From (14) and (15), the coding gain depends upon the
constellation shape, the bit-to-symbol mapping rule, and
the Hamming distances nlt

Hd ,,  that are a function of the
encoder and the interleaver. Fixed the constellation shape,

the coding gain can be increased by choosing an
appropriate mapping.

5.1. Space-time Bit-interleaved Convolutional Codes
 We herein consider the deployment of convolutional
codes, which can be interpreted as very long block codes
that verify the bound in (16). 

The encoded bits are first parsed in the natural order
into NT (i.e., number of transmit antennas) blocks. Then,
each antenna block is further partitioned into NB (i.e.,
number of bursts) blocks, inside which random
interleaving is applied before mapping and transmission.

We have fixed the number of transmit antennas, the
number of bursts per block, and the modulation order.
Then, we have searched for codes that achieve full
asymptotic diversity, i.e., with perfect extrinsic knowledge,
with minimum constraint length (complexity). Further,
Gray mapping is assumed. Some of these codes are listed
in Table 1. Note that some of these codes achieve full
diversity but have product distance χ2

min<1. A mapping
with larger nlt

Ed ,,
min,  than Gray mapping, as well as a higher

constraint length, shall increase such a product distance.
Several codes in Table 1 coincide with the ones reported in
[12] for binary modulation with single transmit antenna
and transmission over NBNT independent bursts.

2 TX Antennas
2 Bits/s/Hz

4 TX Antennas
2 Bits/s/Hz

4 TX Antennas
4 Bits/s/Hz

M - r 4 � 1/2 8 � 1/3 4 � 1/4 4 � 1/2 16 � 1/4
K 3 3 3 3 3
Poly (5,7) (5,7,7) (5,5,7,7) (5,7) (5,5,7,7)
L 2 2 4 3 4

NB=1

X2
min 4.90 2.27 4.90 3.18 0.98

K 3 3 4 4 4
Poly (5,7) (5,7,7) (7,11,13,15) (11,15) (7,11,13,15)
L 3 3 7 5 7

NB=2

X2
min 3.18 2.13 3.91 2.00 0.78

K 3 3
Poly (5,7) (11,15,17)
L 4 5

NB=3

X2
min 2.83 1.11

K 4 4
Poly (11,15) (13,15,17)
L 5 6

NB=4

X2
min 2.00 0.89

Table 1. Minimum constraint
length K convolutional codes that
achieve maximum asymptotic
diversity L, and maximize the
minimum product distance,

)�,(2
min ccχ .  Code rates  r=1/2, 1/3,

1/4, transmission over NB bursts with 2 and 4 transmit antennas,
modulation M=4-PSK, 8-PSK, 16-QAM with Gray mapping.
Polynomial notation as in [13].

6. Simulation Results
Block error rate performance has been evaluated

through simulations. We report only the results
corresponding to the coding schemes in Table 1 for
transmission at 2 Bits/s/Hz over one and four bursts, with
4-PSK modulation and two transmit antennas. The block
length is 240 information bits with tail termination. The
encoded block of bits is first partitioned into the bursts.
Then, each burst is randomly interleaved. Further, distinct
bursts use independent interleavers. Demapping is based
on the approximations in (7) and (9) with perfect CSI. Soft-
output decoding is based on a Max-Log-MAP decoder [10].

In Fig. 3, we assume Gray mapping, transmission over
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one burst, and single receive diversity. The performance is
greatly improved with iterative decoding with both soft
(SF) and hard (HF) feedback. At the fourth decoding
iteration, the gain in BLER at 10-2 over the uncoded system
with single transmit antenna, is 8.5 dB with HF, and 10.5
dB with SF. Further, SF is within 0.5 dB from the BLER
floor that is obtained assuming the same coding scheme,
and decoding based on perfect extrinsic knowledge (i.e., of
all coded bits except the one for which we compute the a
posteriori probability).
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Fig. 3. Fig. 4. 

Block error rate versus average signal to noise ratio with double transmit
and single receive diversity for transmission at 2 Bits/s/Hz of blocks of
240 information bits over one burst (Fig.3) or four independently faded
bursts (Fig.4). Coding schemes of  Table 1 with Gray mapping. Up to four
decoding passes for both soft (SF) and hard (HF) feedback.
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As in Fig. 3 and Fig. 4, with: double receive diversity, both Gray and Non
Gray  mapping, up to six decoding passes for both soft and hard feedback.

In Fig. 4, transmission is over four bursts. Due to time
diversity the performance is greatly improved over the
single burst transmission of Fig. 3. Again, the SF curve
converges to the BLER floor. However, a larger gap is
found with HF. Although not reported, we have found very
small improvements when deploying non-Gray mapping
and single receive diversity.

In Fig. 5 and Fig. 6 we consider double receive diversity

with both Gray and non-Gray mapping. At the sixth
decoding iteration non-Gray mapping yields better
performance than Gray mapping if SF is deployed.
Considering non-Gray mapping, SF is within 1 dB of the
BLER floor in Fig. 5, while it exhibits convergence to the
floor in Fig. 6 even for the SNR range under consideration.

7. Conclusions
We have considered coding with multiple transmit

antennas over block fading channels, when deploying bit
interleavers with iterative decoding based on both soft and
hard feedback. Bounds on the maximum attainable
diversity as well as an asymptotic expression for the
pairwise error probability have been derived. From
computer search, several convolutional codes with bit
interleavers that achieve full asymptotic diversity with
minimum complexity have been found. Simulation results
show that with soft feedback and few iterations the block
error rate curves converge to the error rate floor at
moderate SNR levels. Hard feedback decoding is less
complex but has slower convergence. Further, performance
can be improved by choosing appropriate bit-mappings.
Finally, we have found that as the information block length
increases, and consequently with longer interleavers, the
convergence to the BLER floor is achieved at lower SNRs.
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