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Abstract- Space-time coded architectures that deploy multiple
transmit-receive antennas with interleaved space-time codes are
considered. Decoding is based on the iterative concatenation of a
demapping stage with a decoding stage. We describe several
simplified demapping algorithms based on array processing
methods that can include either soft or hard feedback
information. These algorithms are particularly suited for
application in space-time architectures that deploy bit-
interleaved convolutional codes and transmission over block
fading channels. Performance results show that space-time bit-
interleaved convolutional codes with turbo array processing
provide high coding, and spatial/temporal diversity gains.

I. INTRODUCTION

It is well known that multiple-transmit multiple-receive
antenna architectures can increase the capacity of wireless
communication systems [6], [7]. To approach the capacity
limits we need to deploy powerful space-time coding
schemes that exploit the spatial-temporal diversity of rich
scattering environments.  For low transmission rates, and
small number of transmit antennas several space-time coding
schemes have been proposed. For instance the space-time
trellis codes in [8], or the space-time bit-interleaved codes in
[9]-[13]. The space-time coding problem becomes more
complicated if very high data rates have to be achieved, i.e.,
we deploy a high number of transmit antennas with high
order modulation. On one hand, this is due to the difficulty of
designing coding schemes that are capable of achieving full
spatial diversity and delivering high coding gains. On the
other hand, the optimum decoding algorithm that is based on
the maximum-likelihood principle is characterized by a
complexity that limits the practical implementation.
However, when multiple receive antennas are available array
processing can significantly simplify decoding complexity.

In this paper we consider space-time architectures that
deploy space-time bit-interleaved codes. Essentially, in these
architectures bit interleaving separates coding and
modulation. The encoder can be a block, a convolutional, or a
turbo-encoder. Coding/interleaving can be done only in time,
i.e., each layer is independently coded/interleaved, as well as
in both space and time, i.e., across layers.

We consider transmission over block fading channels, i.e.,
blocks of coded information are transmitted over a small
number of bursts that experience uncorrelated frequency non-
selective fading. The block fading channel model is
appropriate for wireless communication systems that for
instance deploy slow frequency hopping, e.g., the
GSM/EDGE system [13].

Practical decoding is based on a two steps procedure. First,

the received samples are demapped to generate soft
information on the coded bits. Then, after deinterleaving
decoding takes place. Further, demapping and decoding are
concatenated in an iterative fashion following the turbo
decoding approach.

Optimal demapping in flat fading [9], [12] requires to
compute the a posteriori probabilities of all coded bits, which
has a complexity that grows exponentially with the number of
transmit antennas and the number of bits per modulation
symbol on each antenna. Therefore, decoding may be too
complex even for few antennas and low modulation orders.

The coding/decoding problem in inter-symbol interference
channels is addressed in [10], [11], [13].

Assuming that multiple receive antennas are available, we
seek complexity reduction through array processing [1], [3],
[4]. We describe an array processor that performs spatial
decorrelation by including second order statistics of the coded
symbols. We consider a simplification of it that requires only
estimation of the mean and power of the transmitted symbols.
In turn, this estimation can be performed with a conventional
soft-out MAP decoder. We also highlight the conditions
under which this SOFT spatial decorrelator becomes similar
to the known MMSE/ZF array processor, and the successive
interference cancellation processor [6].

Finally, we study the maximum attainable diversity bounds
and the outage probability performance of these architectures.
We report simulation results for several ST bit-interleaved
architectures with minimum complexity convolutional codes
and transmission at 2 and 4 bits/s/Hz.

II. TRANSMITTER, CHANNEL, AND DECODER MODELS

A. Coded Architectures with Multiple Transmit Antennas

We consider a space-time coded architecture with NT
transmit and NR receive antennas. A block of information bits

]...[ 1 bNb bb = is encoded and modulated into NT blocks of
complex symbols (one per transmit antenna/layer) that belong
to the M-PSK or M-QAM signal set.

Mainly two coded architectures are possible. In the first
one, coding is done independently on each transmit antenna.
Therefore, each block of bits b is first S/P converted into NT
sub-blocks that are coded and modulated separately. We refer
to it as temporal coding of a multiple transmit antenna
system.  In a second and more general approach coding is
done across layers and it is referred to as space-time coding.

In terms of coding we can follow either the trellis coded
modulation (TCM) approach, or the bit-interleaved coded
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modulation (BICM) approach. In the former coding and
modulation are done in a single step. In the latter coding is
separated from modulation by a bit interleaver. The extension
to multiple transmit antenna systems is respectively referred
to as space-time trellis coded modulation ST-TCM [8] and
space-time bit-interleaved coded modulation ST-BICM [9].

In this work we consider the deployment of bit-interleaved
codes. When coding is performed on independent layers the
resulting architecture is depicted in Fig. 1 and referred to as T-
BICM. When coding is performed across layers the resulting
architecture is depicted in Fig. 2 and referred to as ST-BICM.

The encoder can be a block encoder, a convolutional
encoder, or a turbo-encoder. After bit interleaving the
encoded bits are mapped into constellation symbols.
Transmission from the antennas is simultaneous.

B. Channel Model

 We assume a channel model where the fading is considered
static over a number of transmitted symbols and then
randomly changes.  In other words, a block of coded symbols
is transmitted over NB bursts that are independently faded [12].
It is interesting to note that such a model applies in systems
that use frequency hopping, e.g., the GSM/EDGE system.

The complex symbol that is transmitted by antenna t at time
instant kT on burst l, is obtained by memoryless mapping of
N coded and interleaved bits [9], i.e., )( ,, lt

k
tlt

k dx µ= , with

],...,[ ,,
1

, lt
NNk

lt
Nk

lt
k ddd ++= being the vector of bits to be mapped.

With Nyquist filtering, and transmission over a frequency
non-selective fading channel, the k-th matched filter output
sample of burst l, and receive antenna r is

lr
k

N

1t
lt

k
ltrlr

k nxhy T ,,,,, )( +=∑ =
.                    (1)

The equivalent channel impulse response during burst l of the
link between the receive antenna r and the transmit antenna t,
is given by ltrh ,, . It is here assumed to be complex Gaussian
with zero mean and unit-variance (Rayleigh fading model).
No channel variation is assumed over a given burst, however
distinct bursts experience independent fading. Further, the
fading is uncorrelated across distinct antenna links. In (1)

lr
kn ,  is the AWGN contribution that is assumed to have mean

zero, variance N0, and to be independent across the receive
antennas.

Frequency selective channels are considered in [10], [11],
[13].

C. Matrix Representation

The MIMO system can be represented in matrix notation by
l
k

l
k

l
k

nxlHy += )( . Since the demapper operates by observing

samples at a given  time instant  (see below), we can drop the
dependency from index k, and l, and write

nx Hy += .                                  (2)
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Fig.1. T-BICM: Time-coded bit-interleaved modulation with multiple transmit antennas.
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Fig.2. ST-BICM: Space-time coded bit-interleaved modulation with multiple antennas.
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Further,

)()( t
t

(t)t(t)
t

(t) zx hnx Hx hy +=++=                (6)

where )(th is the k-th column of (3), )(tH  is the matrix

obtained from (3) suppressing the k-th column, )(tx  is the

interfering symbols vector, 

tx is the symbol of layer t. Finally,
)(tz  is the interference-plus-noise vector seen by layer t.

D.  Turbo Decoding

The optimal decoder operates by searching for the
maximum likelihood solution and takes into account the
encoder, interleaver, and modulator structures. Sub-optimal
decoding is based on the turbo concept of concatenating in an
iterative fashion a demapper with a decoder [9], [12].

The goal of the demapper is to compute soft information on
the coded bits (either a posteriori probabilities, or log-
likelihoods, or log-likelihood ratios) by observing the antenna
samples. After re-arranging and de-interleaving, the soft
information is fed to the decoder.

The goal of the decoder is to recover the block of
transmitted information bits. It is assumed it can provide soft
or hard feedback information on the coded bits to the
demapper. For instance a MAP/BCJR soft-out decoder [2] or
a hard-out Viterbi decoder can be used.

Multiple demapping/decoding iterations should approach
the optimal ML solution.

III.  DEMAPPING

The goal of the demapper is to compute the a posteriori
probabilities of the coded bits by observing NSNB channel
samples from NR antennas, i.e.,

],...,|1[)1( ,,1,, lN
k

l
k

lt
iNk

lt
iNk

RyydPd ±==±=λ ++        (7)

for all TNt ,...,1= , BNl ,...,1= , SNk ,...,1= , Ni ,...,1= .
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Since the demapper operates on a sample by sample basis,
for easy of notation we can drop the dependency from index k
and l, and simply write for the a posteriori log-likelihood

)1(ln)1( ±=λ=±=Λ t
n

t
n dd .                          (8)

Several optimum and sub-optimum algorithms can be used
to compute (8). We consider the optimum a posteriori
probabilities calculator (MIMO-APP), and a soft-in soft-out
spatial decorrelator (SOFT-DCR). We show when the latter
coincides with MMSE/ZF array processing and with
successive interference cancellation. All these algorithms
require estimation of the channel matrix H.

A. MIMO APP Calculator

Details on the optimal computation of (8) can be found in
[9], [12]. The log-likelihood of bit t

nd  being +1 is

)]�[]�|[(ln)1(
)1(�

 xPxyp d t
ndXx

t
n ∑ +=∈

=+=Λ           (9)

where )1( +=t
ndX  is the set of all possible combinations of

transmitted symbols with the constraint that symbol tx ,
transmitted from antenna t, has bit n equal to +1. The
conditional probability density function ]�|[ xyp  under the
assumption of knowing the channel propagation matrix, is
Gaussian [9], [12]. The a priori probability ]�[xP  can be
approximated with the extrinsic information provided by a
soft-out decoder in the previous decoding iteration.

It should be noted that samples from multiple receive
antennas are combined in a maximal ratio combining fashion.
However, the algorithm does not require multiple receive
antennas.

From (9) it is clear that the complexity of the algorithm
grows exponentially with the number of transmit antennas,
and the number of bits per symbol.

B. Soft-Input Soft-Output Spatial Decorrelator

Let us assume to have NR ≥ NT. Then, the interference-plus-
noise vector seen by layer t is, from (6), t

(t)t x hyz −=)( . Its
covariance matrix is1

ntxtztztz KHKHmzmzEK
tttt

+=−−= ⊥⊥
)()()()( )()()()(

}))({(  (10)

where nK  is the covariance of the thermal noise, while  the
covariance of the interference vector is

}))({(
)()()( )()(

⊥−−=
ttt xtxtx mxmxEK .              (11)

Therefore, if we model the impairment with a multivariate
Gaussian process, the logarithm of the probability density
function conditioned on a given hypothetical symbol tx� is

)�()�(
2
1~)�|(ln 1

)( )( (t)t(t) z
t

(t)zz
t

(t)
t

t mx hyKmx hyxzp −−−−− −⊥ . (12)

                                                          
1 Superscript ⊥ denotes transpose conjugate, while T denotes transpose.

From (12) the log-likelihood can be approximated as

)}�()�{(min)1( )(
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n
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where )1( +=t
ndX  is the set of 12 −N symbols tx  that have bit

n equal to +1, and t
tt xhyz �� )()( −= .

In the absence of a priori information we can assume the
transmitted bits/symbols to be i.i.d. with zero mean. This
implies INEK TSx t

/
)(

= , and the algorithm coincides with the

spatial decorrelator described in [5] and [14] for flat fading.
On the contrary, whenever a priori information is available

about the covariance of the impairment, this can be included
in the computation of (10). The covariance of the interference
can be estimated with an ad hoc decoder. In this case we refer
to the algorithm as soft-input soft-output spatial decorrelator.

A simpler way to proceed is described in what follows. At
the first demapping pass we assume the symbols i.i.d. with
power ES /NT and zero mean. In the following demapping
passes we can still assume the symbols i.i.d. but with power
and mean estimated by a soft-output decoder. Thus, the
covariance of the interference vector is diagonal with
elements )||(),( 2

)( jjx mMjjK
t

−= , with }|{| 2j
j xEM = ,

and }{ j
j xEm = . It is simple to obtain an estimation of the

mean/power of the coded symbols by using the soft-outputs
of a conventional MAP-BCJR decoder [2]. In general the
covariance (10) needs to be computed and inverted at any
given time instant and at each demapping pass. When the
symbols are constant amplitude the covariance inversion
takes place only once per burst.

If we delete constant terms that do not depend on the
hypothetical symbol, the computation of (13) yields

  hxmywx   d t
t
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having defined the receive array weights as  Khw
t

T

ztt
1

)()( )(

−⊥= .

C. MMSE Array Processor and ZF Array Processor

In this section we investigate the relationship among the
SOFT spatial decorrelator and the well known minimum-
squared-error and zero forcing array processors [15].

Let NR ≥ NT, then under the hypothesis of i.i.d. zero mean
transmitted symbols, the MMSE array processor detects layer
t by weighting the receive antennas with

1
)(),(

-
ytMMSEt RhwT ⊥=                            (15)

where the correlation matrix of the received vector is
INH HNERH R Hy yER TSnxy 0/}{ +=+== ⊥⊥⊥ .  (16)

It follows that
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It can be shown that the MMSE array processor and the
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spatial decorrelator are identical when there is no feedback
information, and the symbols are assumed to be i.i.d., and to
have zero mean and constant amplitude [5].

An alternative method to combine the receive array is
obtained with the ZF criterion [15]. No estimation of the
noise variance is required although worse performance is
achieved. The weights are obtained from (16) for 00 →N .

Note that if the covariance/correlation matrices are singular,
the weights can be obtained with pseudo-inverse methods.

D. Successive Interference Cancellation: SIC Processor.

Successive interference cancellation in the context of
multiple transmit-receive antennas systems has been
described in [6]. The basic concept is as follows. Detect a
layer by deploying an MMSE or ZF array processor.
Regenerate the corresponding signal. Subtract it from the
received signals. Detect another layer assuming the presence
of only the remaining layers. Continue till all layers are
detected. Further, a performance improvement is achieved by
ordering the detection process in a way such that we detect
the layer that has the best signal-to-noise ratio.

This idea can be combined with turbo detection, if we
simply do canceling using the decoder hard/soft outputs. As
noted in [1] when coding is done separately on the layers,
each layer can be fully detected and decoded without
requiring the detection of the others. This might help to avoid
error propagation. Further, soft interference cancellation can
be obtained in a simple manner by subtracting the mean
values of the symbols. The mean values are easily computed
from the soft-outputs provided by a MAP-BCJR decoder.

Once we have decoded all layers, we can restart detection of
a given layer by applying soft cancellation followed by
maximal ratio combining. This is exactly what the simplified
soft decorrelator does, assuming constant amplitude signals.

Finally, note that hard feedback decisions on the coded bits
can be used in the MIMO APP calculator as shown in [12].

IV.  DIVERSITY ORDER AND OUTAGE PROBABILITY

With NT transmit NR receive antennas and transmission over
NB bursts, the diversity resources are limited to NTNRNB.

In a ST-BICM system with iterative decoding the maximum
attainable diversity L′ satisfies the bound (Singleton) [12]

 ( )  MRNN  NL TBR )log/(1 2−+≤′               (18)
where M is the modulation order, and R is the transmission
rate in Bits/s/Hz.

If coding is done independently on each layer, i.e. we
deploy a T-BICM architecture the bound becomes

 ( )  MNRN  NL TBR )log//1(1 2−+≤′ .            (19)
Therefore lower diversity levels are achievable with the T-
BICM architecture than with the ST-BICM architecture for
the same transmission rate and modulation order.

From a generalization of the Shannon capacity formula [7]
the outage probability, i.e., the probability that the channel
does not sustain the rate, is

]2))()(det([)(
1 0

BB CNN

l T

S
out lHlH

NN
E

IPCP <+= ∏ =
⊥ . (20)

We can also upper bound the outage probability by using
Foschini capacity bound when NT ≥ NR [7] :
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where ),(2 li
RNχ is a sequence of chi-squared independent

random variables with 2NR degrees of freedom.
We will use (20)-(21) to bound the performance curves in

Section V.

V.  PERFORMANCE RESULTS

We consider both ST-BICM and T-BICM architectures with
convolutional codes and QPSK with Gray mapping.

In ST-BICM we use one encoder. Its output bits are parsed
into NT streams and randomly interleaved into NB (Rayleigh
faded) bursts. The code polynomials have been obtained from
computer search [12] and correspond to minimum constraint
length codes that achieve full asymptotic spatial-temporal
diversity for a given transmission rate and modulation order.
For clarity we tabulate the polynomials in Table 1.

In T-BICM each layer is independently coded and randomly
interleaved into NB bursts.

Block error rate performance has been collected over 20000
coded blocks. Demapping has been performed using the APP
calculator with soft feedback (APP-SF), with hard feedback
(APP-HF), with exact feedback (APP-EF), and using the
simplified soft-in soft-out spatial decorrelator (SOFT-DCR).
The channel matrix and noise variance are assumed known.

2 Tx Antennas
2 Bits/s/Hz

4 Tx Antennas
2 Bits/s/Hz

4 Tx Antennas
4 Bits/s/Hz

NB=1 NB=4 NB=2 NB=1 NB=2
K 3 4 4 3 4
Poly (5,7) (11,15) (7,11,13,15) (5,7) (11,15)
L 2 5 7 3 5
X2

min 4.90 2.00 3.91 3.18 2.00
Table 1. Convolutional codes. K: constraint length. L=L′/NR: transmit diversity order.
X2

min: minimum squared product distance with QPSK and Gray mapping.

A. Transmission at 2 Bit/s/Hz with 2 Tx and 2 Rx Antennas

In Fig. 4 we consider a ST-BICM architecture (Fig. 2) for
transmission at 2 bit/s/Hz with 2 Tx and 2 Rx antennas. The
block of information bits has length 240. The convolutional
codes that we deploy are according to Table 1.

The various detectors perform similarly at the 6-th decoding
iteration (IT=6 in the legend). Note that APP-SF converges to
the APP-EF performance, showing the high reliability of the
soft feedback. The performance is improved with
transmission  over 4 bursts due to the increased diversity.

Full spatial and temporal diversity is exploited. As reported
in [12] these ST-BI convolutional codes are the optimal
minimum constraint length codes for transmission over 1 and
4 bursts. Further, it is possible to improve performance by
choosing bit-mappings with larger Euclidean distance [12].

Note that we are only 2 dB in Fig. 4.A and 3-4 dB in Fig.
4.B from the outage probability  although we deploy a simple
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Fig.6. A) ST-BICM and T-BICM at 4 Bits/s/Hz with 4Tx-4Rx antennas over one burst.
B) Transmission at 4 Bits/s/Hz over 2 independently faded bursts. Blocks of 480 bits.

code. In Fig. 1.A we exceed the Foschini outage bound (21).

B. Transmission at 2 Bit/s/Hz with 2-4 Tx and 4 Rx Antennas

In Fig. 5 we consider a ST-BICM scheme for transmission
at 2 bit/s/Hz with 2 and 4 Tx antennas. The number of Rx
antennas is 4. The block size is 240 bits. When using 2 Tx

antennas the information is interleaved across 4
independently faded bursts. When using 4 transmit antennas
interleaving is across 2 bursts. With QPSK modulation the
maximum attainable transmit diversity L=L′/NR is
respectively 5 and 7. Fig. 5 confirms that with (NT=4, NB=2)
we have better performance than with (NT=2, NB=4). In both
cases the turbo SOFT-DCR converges to the APP-EF curves.

C. Transmission at 4 Bit/s/Hz with 4 Tx and 4 Rx Antennas

In Fig. 6 we consider transmission at 4 bit/s/Hz with 4 Tx
and 4 Rx antennas. We compare the performance of T-BICM
and ST-BICM using the turbo soft spatial decorrelator. The
blocks have length 480 information bits. In both Fig. 6.A, and
B better performance is obtained with ST-BICM due to the
increased diversity level.  However, the advantage diminishes
when higher temporal diversity is available as Fig. 6.B shows.

VI.  CONCLUSIONS

We have presented a space-time bit-interleaved coded
approach with turbo decoding based on several demapping
strategies among which soft-in soft-out array decorrelation.

The deployment of �good� ST-BI convolutional codes with
turbo array processing allows for the exploitation of the
spatial and temporal diversities in systems that combine, for
instance, multiple transmit antennas and slow frequency
hopping. Block-error-rate performance is within 2-4 dB from
the outage probability and 1-2 dB from the bound on outage
probability obtained from Foschini capacity lower bound.
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