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Abstract
A space-time coding approach for wireless communications

deploying multiple transmit and multiple receive antennas is
presented. The approach is based on the concatenation of a
convolutional encoder, a bit interleaver, and a space-time signal
constellation mapper that combines multi-level/phase modulation
with multiple transmit antennas. The decoding strategy follows an
iterative (turbo-like) algorithm, where soft information is
exchanged between a soft-in soft-out demapper and a soft-in soft-
out convolutional decoder. It is applicable with one or more
receive antennas, and shows that spectral efficient/reliable
communications are possible with few iterations. We address the
performance analysis in both block and fast flat Rayleigh fading
in order to provide insight into the space-time code construction
criteria for the approach that we propose. Finally, simulation
results are reported for schemes with 2 bits/s/Hz and 4 bits/s/Hz.

1 Introduction
The severe attenuation disturbances (i.e. fading) of

wireless channels often mandate the use of diversity
techniques whenever reliable communications have to be
granted. The basic principle of diversity is to provide the
receiver with replicas of the transmitted signal that
experience less attenuation. Diversity can be exploited in
time, in frequency, and in space [1]. Recently, schemes
deploying multiple transmit and multiple receive antennas
gained a lot of attention since it was shown that the
capacity of a wireless link can be largely increased with
such an architecture [2]. A systematic approach, known as
space-time coding, was presented in [3]. It considers the
design of coding, modulation, transmit and receive
diversities in a unified fashion.

Most of the known space-time coding schemes deploy
trellis codes [3] or block codes [4]. A different approach to
space-time coding is proposed in this paper. It is based on
the serial concatenation of a convolutional encoder, a bit
interleaver, and a space-time signal constellation mapper.
The information bits are encoded with a convolutional
encoder, then are appropriately interleaved and split into
several parallel streams. Each stream is mapped into signal
constellation points using multi-level/phase modulators
(e.g. M-PSK, M- QAM modulators), and transmitted via a
transmit antenna.  Each  receive  antenna  captures a  linear
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superposition of the transmitted signals corrupted by noise.
The resulting scheme is a space-time extension (i.e. to
multiple transmit antennas) of the bit-interleaved coded
modulation concept [5-6]. We refer to it as space-time bit-
interleaved coded modulation, STBICM.

Decoding is addressed for a frequency non-selective (i.e.
flat) fading channel, and is based on the �turbo� concept.
This strategy was originally applied to the decoding of turbo
codes [7-8], and then to various decoding problems such as
iterative demapping/decoding of multi-level modulation [9-
10], and iterative detection/equalization of coded M-DPSK
signals [11]. The decoding problem of STBICM in
frequency selective fading channels is addressed in [12]. In
this paper we show that STBICM can be reliably decoded by
using a feedback receiver structure where soft information is
exchanged between a soft-in soft-out demapper, and a soft-
in soft-out convolutional decoder. The decoding algorithm
can be applied with one or more receive antennas, and yields
significant performance gains by performing some iterations.

In the proposed space-time coded system, variable
spectral efficiencies can be easily obtained by appropriate
choice of the convolutional code rate, the number of
transmit antennas, and the signal constellation mapper.
However, in order to exploit both the spatial and the
temporal diversities, the joint design of the code, the
interleaver and of the space-time constellation mapper has
great importance. We address the performance analysis of
STBICM in both block and fast Rayleigh fading scenarios,
and devise code construction criteria. Differently from [3],
the construction of STBICM with iterative decoding aims to
maximize the distance properties (Hamming and Euclidean)
at a bit level rather than at a symbol level. The appropriate
design of the convolutional code, the interleaver, and the bit-
to-symbol mapping rule allows optimizing the coding gain,
and fully exploiting the spatial and temporal diversities.

Several STBICM schemes with a spectral efficiency of
2 bits/s/Hz and 4 bits/s/Hz are described, and performance
results from simulations are reported.

The paper is organized as follows. Section 2 introduces
the STBICM concept. Section 3 describes the channel
model. Section 4 addresses the decoding algorithm in flat
fading. Performance analysis and code construction criteria
are discussed in section 5. In section 6, simulation results
for several schemes that achieve full diversity with low
complexity are shown. Finally, the conclusions follow.
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2 Transmission Model and STBICM Concept
We consider a wireless communication system

comprising 2≥tN  transmit antennas and 1≥rN  receive
antennas. At the transmitter (figure 1) the information bit
stream bi is first convolutionally encoded and then bit-
interleaved to produce the bit stream di.  The interleaved
bit stream is S/P converted into Nt streams di

t (t=1,...,Nt ,
i=-∞,...,∞). Each parallel stream is mapped (modulated)
into complex constellation points xk

t (t=1,...,Nt , k=-∞,...,∞)
belonging to a multi-phase/level signal set (i.e. M-PSK or
M-QAM signal sets). Each antenna simultaneously
transmits the modulated symbols. Ater S/P conversion the
sub-sequence of bits that at time kT (with T symbol period)
is mapped into Nt channel symbols can be written as

].........[ ,1,,11,1 NN
k

N
k

N
kkk

tt d d d dd = , where N=log2M, and M
is the modulator order. Furthermore, mapping is in general
defined by a rule such that the vector of transmitted
symbols at time kT is )(]...[ 1

k
TN

kkk dx xx t µ== .
The purpose of the bit interleaver is twofold. First, it is

used to de-correlate the fading channel and maximize the
diversity order of the system. Second, it removes the
correlation in the sequence of convolutionally coded bits,
and this is an essential condition for the iterative decoding
algorithm that we propose in section 4. We emphasize that
no orthogonality constraint is imposed on the antenna
constellations, and that with ideal interleaving independent
bits are mapped into antenna constellation points.

The spectral efficiency of the STBICM resulting scheme
is R=RcNtlog2M bits/s/Hz, with Rc convolutional encoder
rate. Different spectral efficiencies can be easily obtained
by appropriate choice of the convolutional encoder rate, of
the modulation order, and of the number of transmit
antennas. Criteria for the construction of  �good� space-
time bit-interleaved codes are discussed in section 5. In
particular we show that the performance depends on
certain Hamming and Euclidean distance properties of the
convolutional code and the bits-to-symbols mapping rule.

3 Channel Model
One or more receive antennas capture the signals

transmitted by the Nt antennas.  Assuming a flat fading
channel, the sequence of T-spaced  samples at the r-th
antenna matched filter output can be written as
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In (1) tr
kh , is the equivalent channel impulse response of

the link between the t-th transmit antenna and the r-th
receive antenna, at time kT; r

kn  is a sequence of i.i.d.
complex Gaussian variables with zero mean and variance
N0 / 2  per  dimension.   We  further   make   the   following
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Figure 1: STBICM base band transmitter.

assumptions. The channel taps are complex Gaussian
distributed with zero mean (Rayleigh fading). The channel
impulse responses of different antenna links are
independent. Both fast fading (i.e. temporal uncorrelated
fading coefficients) and block fading (i.e. static fading
coefficients over a block of transmitted symbols, but
independent over blocks) are considered. The symbol
constellation and the channel profile are normalized:

1]|[| 2 =t
kxE , t=1,...,Nt , and 1]|[| 2, =tr

khE , r=1,...,Nr ,
t=1,...,Nt. Thus, the average signal-energy-to-noise-ratio
can be defined as
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Finally, in vector notation (1) can be written as
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Thus, kkkk
nxHy +=  .

4 Iterative Decoding of STBICM in Flat Fading
Decoding of STBICM is addressed here for a flat fading

environment. The strategy is based on two individually
optimal steps that can be iteratively repeated (figure 2).

In the first step (referred to as demapping) from the
channel samples we compute the a posteriori log-
likelihood ratios of the coded and interleaved bits,

)]1(/)1(log[)( −=+== t
i

t
i

t
i dPdPdL , (4)

for each transmit branch t=1,...,Nt. Since in general we
have samples from an array of receive antennas, and we
want to compute soft values for the bits that are transmitted
on overlapping channels, this module can be interpreted as
a multiple-soft-in multiple-soft-out a posteriori
probabilities calculator (MIMO-APP). In the second step
(referred to as decoding) the a posteriori log-likelihood
ratios of the coded bits are P/S converted, deinterleaved,
and fed to a soft-in soft-out convolutional decoder that is
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implemented according to the maximum a posteriori (MAP)
algorithm [8]. The convolutional decoder provides both the
log-likelihood ratios of the information bits L(bi), and
new/improved log-likelihood ratios of the coded bits L(ci).
Following the turbo decoding principle [7-8] extrinsic log-
likelihood ratios of the coded bits are computed by
subtracting the decoder inputs from the decoder outputs,
Le(ci)=L(ci)-La(ci). This is to minimize the correlation with
previously computed soft values. The extrinsic values are
interleaved, S/P converted, and fed back to the demapper
where they are used in a new iteration as an estimate of the
a priori log-likelihood ratios of the coded bits on each
transmit branch, La(di

t). Extrinsic information is also
computed at the demapper output, Le(di

t)=L(di
t)-La(di

t). By
repeating several times the above procedure, the
performance of the system is greatly improved. In the final
iteration the decoded sequence of information bits is
obtained by making hard decisions on L(bi).

To proceed we need some more notation. Let mt
kd ,  be

the bit that at time instant k is mapped into the m-th bit
position of the constellation symbol of transmit antenna t
(m=1,...,N , k=1,...,Ns , t=1,...,Nt). If we fix bit mt

kd ,� , the

set of all possible symbol vectors having bit bd mt
k =,� , b=±1,

is  )}�|({)�( ,, bddxbd mt
kkk

mt
k ====Χ µ . The cardinality of

such a set is 12 −NNt . With this notation, the log-likelihood
ratios in (4), i.e. )�( ,mt

kdL , conditioned on the channel state
information are computed as
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The product of the conditioned channel probability density
function, and the a priori probability of the symbol vector
yields the joint probabilities in (5). Thus, under the AWGN
assumption
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where A is a constant. In (6) l
kx~  and il

kd ,~
are respectively

the elements of the symbol vector kx~  , and the bits that are
mapped to such a vector. Furthermore, the a priori log-
likelihoods ratios )( ,il

ka dL  are summed in (6) due to the
assumption of independence among the interleaved bits.

At the first pass through the demapper no a priori
information on the coded bits is assumed, thus it is set to
zero. In the following iterations, the a priori log-likelihood
ratios of the bits of each transmit antenna branch are
approximated from the decoder outputs. This a priori
knowledge helps improve the metric quality, and de-couple
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Figure 2: Iterative STBICM base band receiver.

the signals that are simultaneously transmitted. In the
single transmit - single receive antenna case, (5) simplifies
to the computation of the log-likelihoods as shown in [9-10].

Finally, from a complexity standpoint (5) can be
simplified by the known max-Log approximation, i.e. the
log of the sum of exponentials is approximated by the
largest exponent in the exponentials.

5 Performance Analysis for STBICM Construction
Consider a block of transmitted coded symbols of length

Nt Ns. Since at each time instant there are Nt simultaneous
transmissions, we can format such a sequence into the
matrix ]...[ 1 sNx xX =  of size Nt by Ns. Let instead X�  be
the sequence of symbols the receiver decides in favor of.

An upper bound on both the average bit error probability
and frame (block) error rate probability can be computed from
a weighted sum of the pairwise error probability )�( XXP → ,

i.e. the probability of deciding in favor of X�  when X  is
transmitted [1], [5]. The pairwise error probability (PEP)
depends upon the decoding strategy. Iterative decoding
consists, basically, of a first step where the bits are demapped
using feedback information from the MAP convolutional
decoder [8] that is deployed at the second step. Convolutional
decoding yields the maximum-likelihood solution, since no
a priori information on the information bits is known.

If c  and c�  are the coded bit sequences associated

respectively to the symbol sequences X  and X� , then

)�()�( XXPccP →=→ . Let the block of coded bits be
generated by a rate Rc=1/n convolutional encoder. The
coded block has length Nc=nNb=NtNsN bits, with Nb input
information bits. The decoder decides in favor of the
codeword  c�  that maximizes the accumulated path metric [8]:
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The path metric can be equivalently  expressed using either
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the log-likelihood ratios )( l
ia cL , or the log-likelihoods

)~(ln)~( l
i

l
i

l
ia ccPc ==π . Since there is a one to one

correspondence between the sequences of coded bits c�  and

the sequence of coded and interleaved bits d� , then the
decoder decides in favor of c�  given that the sequence c
was indeed transmitted if the following is verified
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where )�( ,mt
ke dπ  are the extrinsic log-likelihoods provided

by the demapper. At a given decoding iteration, these are
computed from the channel samples and the a priori log-
likelihoods provided by the decoder at the previous
iteration.  Thus, (besides a constant factor)
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Equation (9) shows that the extrinsic information on a
given bit is evaluated from the knowledge of the a priori

probability, )1/()
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ka eedP +=  [8], of all
the other bits that are transmitted at the same time.

To proceed and gain insight, we assume to deploy a
genie demapper that has perfect extrinsic knowledge. In
other words the feedback from the decoder is assumed
exact.  Then (9) simplifies to
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With this assumption demapping corresponds to
computation of the log-likelihoods for a 2-ary constellation
whose two symbols belong to a subset of all possible
symbols of antenna t. They differ only on bit mt

kd ,� , and are

given by t
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k
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From (8) and (10) the PEP now becomes (11)
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where we have assumed, in general, that each bit is
transmitted through an independent fading channel due to
the bit interleavers and to independent antenna mapping.
For easy of notation t
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kk
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k ddd )]�|([)�( ,, µµ = . A Chernoff

bound [1] on the pairwise error probability conditioned on
the channel state information can be computed, yielding
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Finally, to obtain the average pairwise error probability, we
need to average (12) over the CSI statistics.

5.1 Average PEP in Fast Rayleigh Fading

Consider mtr
kh ,,  to be a sequence (over indices k, r, t, m) of

i.i.d. zero mean, power one, complex Gaussian variables. The
pdf of their amplitude || ,,,, mtr

k
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k ha =  is Rayleigh distributed

with pdf
2

2)( aaeap −= , 0≥a . Averaging (12) then yields
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5.2 Average PEP in Block Rayleigh Fading

If we assume constant fading over the entire block of Ns

symbols, i.e. |||| ,,, trmtr
k hh =  for k=1,...,Ns , m=1,...,N , then

averaging (12) yields
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5.3 Code Construction Criteria in Fast Rayleigh Fading

Let mtk
Hd ,,  be the Hamming distance between bits mt

kd ,

and mt
kd ,�  of the interleaved error event sequences. Further,

let 2,,,, |)�()(| mt
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E ddd µµ −= be the associated squared

Euclidean distance. Such a distance verifies
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where mt
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min,  is the minimum squared Euclidean
interdistance among all possible symbol pairs that differ

only on bit mt
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bit-branch Hamming distance between the coded
sequences c  and c�  computed over the sub-portions that
are transmitted over antenna branch t, and mapped to bit
position m in the symbols. Then, substituting (15) in (13)
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If )�,( ccd H  is the total Hamming distance between c  and
c� , then for a sufficiently high SNR (16) simplifies to
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showing that the PEP exhibits a diversity advantage equal
to )�,( ccdNG Hrd = , and a coding gain equal to  rN

c DG −=
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Rayleigh fading under the exact feedback assumption the
following code construction criteria are devised

• To maximize the diversity gain the Hamming distance
)�,( ccd H  has to be maximized for any pair of coded bit

sequences.
• To maximize the coding gain the product distance D has

to be maximized for any pair of coded sequences. This
implies the joint maximization of the bit-branch
Hamming distances and the choice of an appropriate bit-
to-symbol mapping rule with high minimum squared
Euclidean interdistance.

For instance, with Gray mapping and 4-PSK modulation
the equality holds in (15), and (17) simplifies to
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0
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2
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N
EXXP −≤→ . (18)

In this case a standard maximum free Hamming distance
convolutional code maximizes the diversity performance.

5.4 Code Construction Criteria in Block Rayleigh Fading
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Thus, the pairwise error probability is upper bounded by
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and for high SNRs

∏ ∑
=

−

=

≤→
t

r

N

t

N
N

m

mt
E

mt
H

s dccd
N
EXXP

1 1

,
min,

,

0
))�,(

4
()�( .    (21)

Thus in block Rayleigh fading under the exact feedback
assumption the following applies

• A diversity order of at most rt NN is achieved. This is
obtained when for any pair of coded bit sequences the
Hamming distance computed over their antenna sub-
portions differs from zero for all antennas.

• To maximize the coding gain the product distance
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maximized for any pair of coded sequences. An
appropriate mapping increases such a product distance.

For instance, with Gray mapping and 4-PSK modulation
(21) simplifies to
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where )�,( ccdt
H  is the Hamming distance computed on the

sub-sequences that are transmitted over antenna t. In this
case, convolutional codes with maximum free Hamming
distance per branch are a good choice. These codes may
not have maximum compound free distance.

5.5 Further Performance Considerations

The STBICM design criteria derived in the previous
sub-sections rely on the assumption of exact feedback. We
can think that the proposed soft feedback iterative
decoding algorithm asymptotically mimics the exact
feedback decoder. The error introduced by the practical
decoder translates into some magnification of the PEP.
Remarkably we found that the slope of the frame error rate
curves (see next section) evaluated by simulations matches
the diversity order predicted by the theory. We point out
that although improved coding gains can be found with
mappings different from Gray, demapping and feedback at
the initial iterations can be more unreliable, affecting the
overall performance. Finally, it should be noted that the
block fading model of section 5.2 applies to a static fading
environment where interleaving is limited within each
block of coded data. Coded blocks are then sent
sufficiently apart in time or frequency. Interleaving across
distinct blocks is capable of decorrelating the channel to
the limit represented by the fast fading scenario.

6 STBICM Schemes and Simulation Results
Using the criteria in section 5, several STBICM schemes
have been designed for an optimal tradeoff between
complexity and performance. Frame error rate from
simulations is reported for both block and fast fading.

For reference, the transmit delay diversity scheme with
4-PSK modulation is also considered (referred to as
TXDEL2). This scheme is basically a repetition code as
pointed out in [3] with a spectral efficiency of 2 bits/s/Hz.
Scheme 1: 2 bits/s/Hz - 2 tx antennas - 1 and 2 rx antennas

Blocks of 260 bits are convolutionally encoded with a 4
states rate 1/2 code. Two bits are used for tail termination.
The code polynomials in octal notation are (7,5). Bits from
the first polynomial are sent to the first antenna, while bits
from the second polynomial are sent to the second antenna.
Two random interleavers of length 260 are used before Gray
mapping to 4-PSK symbols on each antenna. No inter-frame
interleaving is considered. Thus no channel decorrelation
results in block fading.  With this scheme the free Hamming
distance of the code is 5. The free Hamming distance on
antenna one is 3, while on antenna two is 2. The diversity
order in block fading with one receive antenna is 2.  We
refer to this scheme as STBICM2. From figure 3 in block
fading at FER=10-2, STBICM2 with 1 rx antenna gains 7 dB

0-7803-6507-0/00/$10.00 2000 IEEE 477 VTC 2000



from the first pass through the decoder (it=0) to the second
(it=1). The overall gain with 4 passes (it=3) over TXDEL2 is
3 dB. When deploying 2 rx antennas there is a diminished
return from iterations, although the gain over TXDEL2 is
still 3 dB. In fast fading the overall gain over TXDEL2 is 12
dB with 1 rx antenna and 7 dB with 2 rx antennas.
Scheme 2: 2 bits/s/Hz - 4 tx antennas - 2 rx antennas

Similarly to scheme 1, however we use a rate 1/4
convolutional code with polynomials (7,5,7,5), i.e. one per
antenna. The free Hamming distance is 10. The diversity
order in block fading is 4 with one receive antenna.

From figure 4, STBICM2 with 8 iterations gains over
TXDEL2 3.5 dB in block fading and 5.5 dB in fast fading.
The improvements from 4 to 8 iterations are marginal.
Scheme 3: 4 bits/s/Hz - 4 tx antennas - 2 rx antennas

Blocks of 260 information bits are encoded as in scheme
1. However, the bits at the output of the encoder are parsed
into four antenna sub-streams. 4-PSK modulation is still
deployed. The diversity order in block fading is 3 with one
receive antenna.

Figure 4, shows that it is possible to double the spectral
efficiency and lose only 1.5 dB in block fading over
TXDEL2 that still deploys 4 tx and 2 rx antennas. In fast
fading it is actually possible to gain 1.5 dB over TXDEL2.

Conclusions
This paper investigates a novel space-time coding

approach based on space-time bit-interleaved convolutionally
coded modulation with multiple transmit antennas. An
iterative demapping/decoding strategy is proposed for flat
fading channels with perfect knowledge of the channel state
information. Performance analysis is attacked under the
assumption of exact feedback from the decoder. As a result
bounds on the pairwise error probability are found for both
block and fast Rayleigh fading, and code construction criteria
are devised. The diversity order and the coding gain depend
on the Hamming distance of certain coded bit sub-sequences.
Further, appropriate bit mappings can enlarge the product
Euclidean distance of the code and yield higher coding gains.

Performance results from simulations of several STBICM
schemes show that in terms of diversity gain there is
agreement with theory, and that high coding gains are
achieved over the transmit delay diversity scheme [3]. The
gains are more pronounced in the fast fading scenario, and are
achieved with few decoding iterations. Application of
STBICM in frequency selective fading is studied in [12].
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