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Abstract—This paper addresses the effect of the phase noise
on filter bank modulation systems. We compare the Discrete
Multitone (DMT) with the Filtered Multitone (FMT) systems
developing an analysis of the distortion due to the Common Phase
Error (CPE), the Inter Symbol Interference (ISI) and the Inter
Channel Interference (ICI). We consider the non-coherent (NCR)
and the coherent receiver (CR) where the NCR estimates the data
symbols without the knowledge of the CPE while the CR assumes
perfect knowledge of the CPE.

I. INTRODUCTION

This paper treats the effect of phase noise in transmission

systems based on modulated filter banks (FB). In particular, we

analyze the DMT (Discrete Multitone) system (also referred to

as OFDM [1]) and the FMT (Filtered Multitone) system [2].

They differ in the use the prototype pulses since the DMT

system uses a rect(n) pulse, while the FMT system uses a

frequency confined pulse, e.g., a sinc(n) pulse.
While the analysis of phase noise has been widely inves-

tigated in DMT systems, little work has been done in FMT

systems. We present a study of the distortion due to phase

noise which includes the effects of the Common Phase Error

(CPE) [3], the Inter Symbol Interference (ISI) and the Inter

Channel Interference (ICI). The performance is evaluated for

both systems considering two types of receivers, the non-
coherent (NCR) and the coherent (CR) receiver. The NCR

assumes no knowledge of the CPE, while the CR assumes the

knowledge of the CPE.
This paper is organized as follows. In Section II, we describe

the system model, and in Section III we report the phase

noise model used for the analysis. The evaluation of the

CPE in DMT and FMT systems is discussed in Section IV

while the ICI evaluation is done in Section V. The theoretical

computation of the bit-error-rate (BER) is reported in Section

VI, and the numerical results in Section VII. Finally, we report

the conclusions.

II. FILTER BANK TRANSMISSION SYSTEM

In Fig. 1 we depict the system model considered in

this paper. M low rate data signals a(k)(Nn), with k ∈
{0, 1, · · · , M − 1} are upsampled by a factor N then they are

filtered with pulses g(k)(n) = g(n)ej 2π
M kn where g(n) is the

prototype pulse, and finally they are summed and transmitted.
The phase noise introduces a multiplicative distortion

θ(n) = ejφ(n), where φ(n) is the phase noise, on the
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Fig. 1. Generic representation of a Filter Bank scheme, including the phase
noise.

transmitted signal x(n). Therefore, the phase noise causes

a random phase shift offset on the transmitted signal. We

consider a system with an ideal propagation media to better

understand the effect of the phase noise.

The received signal is passed through an analysis FB with

pulses h(k)(n) = g(k)∗(−n). The sub-channel outputs of the

FB are sampled by a factor N . The output signals are denoted

with b(k)(Nm) and can be written as:

b(k)(Nm) =
M−1∑
i=0

∑
l∈Z

a(i)(Nl)
∑
n∈Z

g(i)(n−Nl)

× ejφ(n) h(k)(Nm− n)

= a(k)(Nm) G(k)(Nm) + ISI(k)(Nm)

+ ICI(k)(Nm) + w(k)(Nm) (1)

where G(k)(Nm) is the equivalent sub-channel response as-

sociated to the data of interest.

Therefore, the received sub-channel signal comprises the

data symbol multiplied by the gain G(k)(Nm), plus the

distortion terms ISI(k)(Nm), ICI(k)(Nm), and the noise

w(k)(Nm) component. The ISI and ICI components are

a function of both the prototype pulse and the phase-noise

process.

It should be noted that in the case of DMT the pro-

totype pulse is rectangular, i.e., g(n) = rect(n/M) where

rect(n) = 1 for n ∈ {0, · · · , M − 1} and zero otherwise.

The ideal FMT system deploys instead the prototype pulse

g(n) = sinc(n/N) = Nsin(πn/N)/π. For practical applica-

tions the Root Raised Cosine (RRC) filter g(n) = rrcos(n/N)
is used.
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Fig. 2. Phase Noise PSD: PSD1 has f1 = 1kHz, f2 = 10kHz; PSD2
has f1 = 10kHz, f2 = 100kHz. Both have the same parameter aφ = 6.5,
bφ = 4 and, cφ = 10.5.

III. PHASE NOISE MODEL

In this paper we model the phase noise power spectrum with

a general and adaptable model already used in [3], [4] and [5].

This allows describing the phase noise that is introduced by

a wide class of commercial oscillators. The power spectral

density (PSD) here considered has the following analytic

expression

Rφ(f) = 10−cφ +

{
10−aφ |f | ≤ fφ1

10
−(|f |−fφ1 )

bφ
fφ2

−fφ1
−aφ |f | ≥ fφ1 .

(2)

The coefficient cφ determines the noise floor, bφ the slope,

aφ and fφ1 establish the white phase noise region and fφ1 is

the frequency where the noise floor is dominant. In Fig 2 we

report two examples of PSD.

If we assume the standard deviation small enough (σφ <<
1), the term θ(n) can be rewritten using the Taylor’s series

expansion as

θ(n) = ejφ(n) ≈ 1 + jφ(n). (3)

The PSD of θ(n) can then be approximated with:

Rθ(f) = δ(f) + Rφ(f). (4)

IV. COMMON PHASE ERROR ANALYSIS

The phase of G(k)(Nm) that we denote with ΦCPE =
arg(G(k)(Nm)) is referred to as Common Phase Error (CPE)

[3] since it is identical on all the sub-channels. It introduces

a phase rotation on the transmitted data symbols.

In this paper we present a general framework for the

analysis of the CPE, the ISI and ICI components for both

DMT and FMT extending the results in [5]. The methodology

is general and can be applied to all filter bank transmission

systems. Furthermore, our analysis considers the ideal FMT
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Fig. 3. PSD of the common phase error for M = 128 and M = 2048 for
DMT and FMT systems using the PSD2 phase noise model.

scheme which deploys the sinc(n/N) pulse, but for practical

applications a rrcos(n/N) can be used. However, the behavior

of the CPE power spectra of the rrcos(n/N) is very close to

the sinc(n/N) pulse. The CPE PSD for the case of DMT and

ideal FMT systems can be computed in closed form and it is

respectively given by:

RDMT
ΦE

(f) = (NT )2 sinc2(NTf) Rφ(f) (5)

RFMT
ΦE

(f) = (NT )5 trian2(NTf) Rφ(f) (6)

where we consider a transmitted signal with bandwidth BW
and sampling period period T = 1/BW .

In Fig. 3 we depict the CPE PSD for both systems assuming

M = 128 and M = 2048 and N = M for both DMT and

FMT and using the phase noise PSD2 in Fig. 2.

V. ICI POWER EVALUATION

The average power of the ICI component can be computed

through the following formula:

M
(k)
ICI = Ma

M−1∑
k̂=0
k̂ �=k

∑
l∈Z

∑
n1∈Z

n2∈Z

gh(k,k̂)(Nl, n1)rθ(n1 − n2)

× gh(k,k̂)
∗
(Nl, n2) (7)

where

gh(k,k̂)(Nl, n) = g(k̂)(n−Nl)h(k)(−n) (8)

and rθ(n) is the correlation of the process θ(n) directly

available applying the inverse Fourier transform on the PSD

Rθ(f).
In Fig. 4, we report the ICI power for DMT and FMT with

N = M as a function of the number of sub-channels assuming

the phase noise model PSD2. The figure shows that DMT is

somewhat more sensitive to ICI than FMT due to a worse

sub-channel spectral containment.
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Fig. 4. Power of the ICI components for vs. number of sub-channels for
DMT and FMT systems.

VI. RECEIVERS AND BER ANALYSIS

We consider both non-coherent and coherent detection. The

non-coherent receiver assumes no knowledge of the CPE and

uses the following detection metric on each sub-channel:

â(k)(Nm) = arg min
a∈A

||b(k)(Nm)− a||2 (9)

where A is the constellation alphabet and we assume a

unitary energy prototype pulse. For BPSK modulation the error

probability Pe(ΦCPE) conditioned on ΦCPE assuming the

NCR is

PeBP SK
(ΦCPE) = Q

(
V0cos(ΦCPE)

σNI

)
(10)

with σNI being the power of the interference plus noise. The

average of PeBP SK
(ΦCPE) is then:

PeBP SK
=

∫ +∞

−∞
Q

(
V0cos(ΦCPE)

σNI

)
fΦ(ΦCPE) dΦCPE

(11)

with fΦ(ΦCPE) being the probability density function of

ΦCPE .

Since ΦCPE is a sum of several components it can be

approximated as a Gaussian random variable with zero mean

and σ2
ΦCP E

=
∫ B/2

−B/2
RΦCP E

(f)df . Unfortunately, this integral

cannot be computed in closed form. An approximation can be

obtained if we assume that σΦCP E
<< 1. The calculation

yields {
PeBP SK

≈ 1
π σφe−SINR/2

SINR = 1
1/SIR+1/SNR

(12)

where

SIR =
E[|a(k)|2]

E[|ISI(k) + ICI(k)|2] (13)

is the signal-to-interference ratio and

SNR =
E[|a(k)|2]
E[|w(k)|2] (14)

is the signal-to-noise ratio.

For QPSK modulation the BER with the non-coherent

receiver is given by

PeQP SK
=

1
2
(1− (1− PeBP SK

)2). (15)

The coherent receiver uses instead the following decision

metric under the assumption of knowing the CPE

â(k)(Nm) = arg min
a
||b(k)(Nm)−G(k)(Nm)a||2. (16)

Assuming that the CPE varies slowly w.r.t. the prototype

pulse length, and that G(k)(Nm) has unitary power, the BER

can be approximated as

P c
eBP SK

= Q
(√

2SINR
)

. (17)

For QPSK modulation the BER is given by

P c
eQP SK

=
1
2
(1− (1− P c

eBP SK
)2) (18)

VII. NUMERICAL RESULTS

Simulation results are reported to evaluate the bit-error-

rate performance of both DMT and FMT and compare them

with the theoretical analysis. We assume a bandwidth BW =
25MHz with M = 64 sub-channels. The interpolation-

sampling factor is N = M .

First, we report in Fig. 5 and Fig. 6 the results of the

theoretical analysis that assumes an FMT system with a sinc
prototype pulse. The performance of FMT is worse than that

of DMT for high SNRs. The coherent receiver yields improved

performance in both systems. The two phase noise PSD

models yield essentially the same theoretical performance.

Now, in Fig. 7 and Fig. 8 we report the results obtained

via computer simulations. The FMT prototype pulse g(n) is

a square-root raised cosine pulse with roll-off ρ = 0.2 and

extension Lf = 12N . We assume QPSK modulation.

The simulations show that the DMT and FMT systems have

very similar performance. The CR can correct the distortion

due to the CPE therefore it yields better performance than the

NCR. In general the ICI component in FMT is smaller that

in DMT due to a better sub-channel spectral containment, as

it is also shown in the example of Fig. 4. The FMT system

also experiences ISI which can be mitigated with sub-channel

equalization and this would improve its performance.

Finally, we point out that the BER analytical results approx-

imate reasonably well the simulation results.

VIII. SUMMARY AND CONCLUSION

In this paper we have analyzed the effect of the phase

noise on filter bank transmission systems. In particular, we

have considered the DMT and the FMT systems and reported

a general analysis of the distortion due to the CPE, the ISI

and ICI. We have compared the performance of these systems

considering the non-coherent and the coherent receiver where

the first receiver assumes no knowledge of the CPE, while

the second receiver assumes it perfectly known. Both the

theoretical results and the simulation results show that in
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Fig. 5. BER theorical using Eq. (12) for M = 64 and M = N with the
non-coherent receiver.
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Fig. 6. BER theorical using Eq. (18) for M = 64 and M = N with the
coherent receiver.

general DMT and FMT have similar performance with both

receivers. Since the FMT system can also exhibit some ISI, its

performance can be improved with sub-channel equalization.
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