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Abstract—This paper addresses some initial experiments using
polynomial matrix decompositions to construct MMSE precoders
and equalisers for MIMO power line communications (PLC)
channels. The proposed scheme is based on a Wiener formulation
based on polynomial matrices, and recent results to design and
implement such systems with polynomial matrix tools. Applied
to the MIMO PLC channel, the strong spectral dynamics of the
PLC system together with the long impulse responses contained
in the MIMO system result in problems, such that diagonlisation
and spectral majorisation is mostly achieved in bands of high
energy, while low-energy bands can resist any diagonalisation
efforts. We introduce the subband approach in order to deal
with this problem. A representative example using a simulated
MIMO PLC channel is presented.

I. INTRODUCTION

Many transceiver techniques such as OFDM or optimal

�lter bank based systems perform block processing [1], [2],

whereby degrees of freedom are invested into a guard interval

that enables to suppress inter-block interference (IBI). The

remaining design can then utilise elegant linear algebraic

techniques to achieve optimality in various senses, such as

by employing a singular value decomposition of the resulting

channel matrix. By applying IBI cancellation �rst rather than

trading it off against various other system errors, error terms

are not balanced. Recent systems considering this problem

include e.g. [3], [4].

In this paper, we consider a minimum mean square error

(MMSE) approach for �lter bank design of precoding and

equalisation targetting both inter-symbol interference (ISI) and

structured noise that has been suggested in [5]. While [5]

chooses an elegant polynomial matrix formulation, the lack

of tools to address the resulting design problem have led to

signi�cant simpli�cations. Here, we explore the utilisation of a

polynomial eigenvalue decomposition in [6], [7], which limits

the precoder to a paraunitary design. The paraunitarity will

be shown to have bene�cial consequences, such as simple

power control by well-known water�lling algorithms [8], as

well as the application of inversion techniques for polynomial

matrices, which need to be solved for the precoder and

equaliser design according to the Wiener approach in [5], [9].

The precoder and equalisation design is based on a formula-

tion by Mertins [5], which is stated in Sec. III. In Sec. IV, some

thoughts are provided on the implementation of this design.

Inital results of this approach are discussed in Sec. V with an

application to simulated MIMO power line channel. Finally,

conclusions are drawn in Sec. VI.

A. Notation

Below, boldface uppercase variables such as H will indicate

matrices, while boldface lowercase or underlined letters rep-

resent vector valued variables, such as v or V . The operator

f�gH indicates Hermitian transpose. For polynomial matrices,

such as H(z) =
P

n H[n]z�n, the parahermitian operator ~f�g
implies Hermitian transpose of all matrices and time reversal,

i.e. ~H(z) = HH(z�1) =
P

n HH[n]zn. For abbreviation,

transform pairs are denoted H(z) ��� H[n]. The z-transform

is here used for notational purposes only; no actual transfor-

mation is carried out, and all calculations will be performed

in the time domain.

II. SYSTEM MODEL

We assume a PLC channel utilising M wires for transmis-

sion � e.g. phase, neutral, and earth in a single-phase system

� with some degree of cross-coupling, such that an M � M

MIMO transmission system C[n] arises, whereby

C[n] =

2
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c0;0[n] c0;1[n] : : : c0;M�1[n]

c1;0[n] c1;1[n]
...

...
. . .

...

c(M�1);0[n] c(M�1);1[n] : : : c(M�1);(M�1)[n]
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;

(1)

with ci;j [n] being the channel impulse response between the

jth input and the ith output of the system. Additionally,

we consider multiplexing P subchannels across the MIMO

link C[n], which in term of notation can be represented by

demultiplexing the channel C[n] into a MP � MP matrix

H[n]. The structure of this channel matrix can be expressed

in the z-domain based on C(z) ��� C[n] by a block-pseudo-

circulant polyphase description H(z) ��� H[n]

H(z)=

2

6
6
6
4

C0(z) z�1CP �1(z) : : : z�1C1(z)
...

. . .
. . .

...

CP �2(z) C0(z) z�1CP �1(z)
CP �1(z) CP �2(z) : : : C0(z)
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(2)

where Cp(z) =
P

n C[nP + p]z�n.
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Fig. 1. System model with channel polyphase matrix H(z) and noise source
model A(z); the transceiver design comprises of a precoder P(z) and an
equaliser W(z).

Besides co-channel interference (CCI) and ISI caused by

H(z), the received signal is affected by additive noise. Sim-

ilar to the channel, the noise can be demultiplexed into P

subchannels. If the noise is Gaussian and broadband, then a

source model or innovations �lter matrix A(z) 2 CMP �K

can linearly relate the MP noise signals corrupting the receive

signal to K uncorrelated, mutually independent and identically

distributed Gaussian processes with unit variance [10], which

are denoted by V (z) 2 CK ��� v[m] in Fig. 1. Therefore,

the noise power spectral matrix Rw(z) 2 CK�K(z) as seen

at the receiver becomes

Rv(z) = A(z) ~A(z) : (3)

As a consequence of (3), Rv(z) is parahermitian, i.e. Rv(z) =
~Rv(z).

The matrices P(z) 2 CMP �NP (z) and W(z) 2
C

NP �MP (z) describe the precoder and equaliser, respectively.

Due to potential oversampling, i.e. N � M , redundancy is

introduced into the transmitted signal S[n], which can be

exploited to mitigate structured noise and strong modes of the

channel transfer function. The design of the linear precoder

and equalisation systems P(z) and W(z) are the focus of

this paper.

III. MMSE MIMO PRECODING AND EQUALISATION

APPROACH

The precoder and equalisation design is based on a single-

input single-output (SISO) formulation by Mertins [5]. For

an arbitrarily selected precoder matrix P(z), according to a

Wiener �lter formulation in the z-domain in [5], the MMSE

solution for W(z) can be stated as

W(z) = Re(z) � ~P(z) ~H(z)R�1
v (z) ; (4)

whereby Re(z) is given by

Re(z) = �2
h

I + �2 ~P(z) ~H(z)R�1
v (z)H(z)P(z)

i
�1

; (5)

with �2 being the (equal) power of the signals in X[n] in Fig. 1

that feed into the precoder. Assuming that W(z) has been

selected as in (4), the power spectral matrix Re(z) ��� Re[� ]

de�nes the MMSE, �MMSE, as

�MMSE = trfRe[0]g (6)

= tr

8

<

:

1

2�

2�Z

0

R(ej
)d


9

=

;
: (7)

With W(z) selected as the Wiener solution according to

(4), the precoder P(z) can be chosen such that the MSE in

(6) is minimised. While in [5], the z-domain notation is chosen

for its �exibility, the lack of polynomial matrix tools required

a simpli�cation for the solution by creating a non-polynomial

precoder P0 = P(z). This is based on a trick exploited by

most block-based transmission systems such as OFDM or

optimal �lter bank-based precoders and equalisers [1], [2],

where the multiplexing factor P is selected larger than the

channel order L.

With P > L, the polyphase components Cp(z) in (2)

become zero order, and the channel matrix H(z) reduces to

a �rst order polynomial, where terms with z�1 are restricted

to the right upper triangular corner of H(z) as seen in (2).

Using a guard interval, or employing leading or trailing zeros

in the transmitter or receiver [1], [2] allows one to extract

the zero order component of H(z). The insertion of a guard

interval means that the �lter bank is oversampled, and the

degrees of freedom associated with the redundancy of this

system are utilised to create a zero order transmission matrix

thus eliminating IBI.

For the MMSE system in [5] de�ned by (4) and (5),

an implicit selection of P > L leads to a rectangular �

i.e. oversampled � selection P(z) = P0 such that the ex-

pression PH
0

~H(z)R�1
v (z)H(z)P0 turns into a non-polynomial

formulation.

IV. INVERSION OF PARAHERMITIAN MATRICES

The work on an eigenvalue decomposition for polynomial

matrices in [7] has stimulated a number of tools for polynomial

matrix algebra such as the inversion of parahermitian matri-

ces [11] required in (4) and (5), which can address the above

MMSE formulation for precoder and equaliser more directy.

The required tools are addressed below.

A. Polynomial Eigenvalue Decomposition

A polynomial eigenvalue decomposition of a parahermitian

matrix R(z) 2 CM�M (z) is de�ned as

R(z) = Q(z)�(z) ~Q(z) (8)

whereby Q(z) 2 CM�M (z) is paraunitary, i.e.

Q(z) ~Q(z) = ~Q(z)Q(z) = I (9)

and �(z) 2 CM�M (z) is parahermitian and diagonal with

diagonal elements �i(z) ordered such that the power spectral

densities �i(e
j
) ful�ll

�i(e
j
) � �i+1(ej
); 8
; i = 0 : : : (M � 2) : (10)

The property (10) is called spectral majorisation. While a

practical decomposition algorithm developed in [7] will be
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Fig. 2. Power spectra �i(ej
) of a spectrally majorised matrix R(z).

discussed later, an example a the spectrally majorised �(z) is

given in Fig. 2.

B. Polynomial Inverse

Based on the PEVD, the inverse can be formulated

R�1(z) = Q(z)��1(z) ~Q(z) : (11)

It is straightforward to show that

R�1(z)R(z) = R(z)R�1(z) = I : (12)

The paraunitarity of Q(z) plays a vital role in the simplicity

of this inverse. It remains to invert the diagonal polynomial

matrix �(z), which can be achieved by inverting all elements

along on the main diagonal,

��1(z) =

2

6
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4

��1
0 (z)

��1
1 (z)

. . .

��1
M�1(z)

3
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7
5

; (13)

whereby �i(z)��1
i (z) = 1. Next, a practical decomposition

to determine Q(z) will be reviewed, before methods to invert

the on-diagonal elements �i(z) are discussed in Sec. IV-D.

C. Sequential Best Rotation Algorithm

SBR2 is an iterative broadband eigenvalue decomposition

technique based on second order statistics only and can be seen

as a generalisation of the Jacobi algorithm. The decomposition

after L iterations is based on a paraunitary matrix UL(z),

UL(z) =

LY

i=0

Qi�i(z) (14)

whereby Qi is a Jacobi rotation and the matrix �i(z) a

paraunitary matrix of the form

�i(z) = I � viv
H
i + z��iviv

H
i (15)

with vi = [0 � � � 0 1 0 � � � 0]H containing zeros except for

a unit element in the �ith position. Thus �i(z) is an identity

matrix with the �ith diagonal element replaced by a delay

z��i .

At the ith step, SBR2 will eliminate the largest off-diagonal

element of the matrix Ui�1(z)R(z) ~Ui�1(z), which is de�ned

by the two corresponding sub-channels and by a speci�c

lag index. By delaying the two contributing sub-channels

appropriately with respect to each other by selecting the

position �i and the delay �i, the lag value is compensated.

Thereafter a Jacobi rotation Qi can eliminate the targetted

element such that the resulting two terms on the main diagonal

are ordered in size, leading to a diagonalisation and at the same

time accomplishing a spectral majorisation.

SBR2 only achieves an approximate diagonalisation after

a �nite number of iteration steps when off-diagonal elements

are smaller than a threshold #,

R(z) = Q(z) (�(z) + E(z)) ~Q(z) (16)

with �(z) diagonal and E(z) a non-sparse error matrix

with kE(z)k1 � #. Here, the in�nity norm kR(z)k1 is

de�ned as returning the largest element across all matrix-

valued coef�cients of the polynomial R(z),

kR(z)k1 = max
�

kR�k1 : (17)

An alternative stopping criterion is to de�ne a maximum

number of iterations for SBR2 [6], [12].

D. Inversion of Autocorrelation Sequences

This section addresses the inversion of on-diagonal ele-

ments of �(z). These elements have the properties of auto-

correlation sequences, i.e.

rii[� ] = r�

ii[�� ] ��� Rii(z) = R�

ii(z
�1) :

This symmetry can be exploited in the inversion process, since

the inverse of a linear phase SISO system must also be a

linear phase system and therefore have the same symmetry

properties [13]�[15]. From Rii(z)R�1
ii (z) = 1 we deduce

rii[� ]�sii[� ] = �[� ] where sii[� ] ��� Sii(z) = R�1
ii (z) is the

inverse of the auto-correlation sequence. We here use S(z) to

describe the inverse of R(z) due to potential truncation errors

in the methods described below.

E. Time Domain / MMSE Inversion

The time domain inversion is based on a convolutional

matrix desciption of the convolution of an auto-correlation

sequence r[n] and its inverse s[n],
2
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...
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r[�N ] r[N ]
. . .

. . .
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. . .
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r[�N ]
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2
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s[�T ]
...

s[0]
...

s[T ]

3

7
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7
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=

2
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0
1
0
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0
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(18)



or

As = d

with A 2 C
(2T +2N+1)�(2T +1), s 2 C

(2T +1) and d 2
Z(2T +2N+1). A solution can be obtained via the left pseudo-

inverse,

s = (AHA)�1AHd (19)

This solution should have the same symmetry properties

as r[n], and any deviation from symmetry must be due to

numerical problems in the inversion process. The symmetry

error

� = ks � Js�k2
2 (20)

should be as small as possible.

A minimum mean square error solution to (19) can be ob-

tained by including the noise-to-signal ratio for regularisation

purposes.

1) Inversion with Explicit Symmetry Constraint: An ill-

conditioned A can lead to an asymmetric solution in (19).

Hence it is advantageous to enforce symmetry in the setup.

This can be performed by a Lagrangian approach, which

solves the constrained optimisation problem

�nd min
s

kAs � dk2
2 (21)

subject to s = Js� : (22)

Instead of solving this Lagrangian problem, the next section

discusses a direct approach of embedding the constraint into

the formulation.

2) Inversion with Implicit Symmetry Constraint: The sym-

metry condition can be incorporated into the system equation

by formulating
�

RefAg �ImfAg
ImfAg RefAg

�

�

�
Refsg
Imfsg

�

=

�
d

0

�

:

In this, the inverse is implicitly constrained by only de�ning

half the response as

w =

2

6
6
6
4

s[�T ]
...

s[1]
1
2 s[0]

3

7
7
7
5

with

Refsg =

2

4

IT 0
0T 2
JT 0

3

5 Refwg = M1Refwg (23)

Imfsg =

2

4

IT 0
0T 0

�JT 0

3

5 Imfwg = M2Imfwg ; (24)

to reconstruct the real and imaginary part of the true solution.

Therefore the problem formulation becomes
�

M1RefAg �M2ImfAg
M2ImfAg M2RefAg

�

| {z }

Ac

�

�
Refwg
Imfwg

�

=

�
d

0

�

| {z }
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Fig. 3. PLC MIMO channel measurement sample H(ej
) over a frequency
range of 100MHz.

and the solution is reached via the pseudo-inverse

s = [M1 jM2]
�
AT

c Ac

��1
AT

c dc :

The latter approach has been shown in [11] to be superior

in terms of precision and computation complexity to both the

unconstrained problem, as well as the formulation involving

explicit constraints.

V. SIMULATIONS AND RESULTS

In this section we present some initial results based on a

MIMO PLC channel model developed at the University of

Udine. This channel model generates channel responses based

on a bottom-up PLC channel simulator described in [16].

A representative 2 � 2 MIMO channel characterised by the

4 magnitude responses of the constituting SISO subchannels

Cij(ej
) is shown in Fig. 3. The channel is simulated over a

bandwidth of 100MHz and exhibits severe frequency selectiv-

ity.

Assuming a much simpli�ed noise model with corruption by

additive white Gaussian noise, the noise power spectral matrix

is given by a scaled identity matrix, and the denominator of

the Wiener solution yields

Re(z) = (I + �2 ~P(z) ~H(z)H(z)P(z))�1 : (25)

To minimise the MMSE, the terms in ~P(z) ~H(z)H(z)P(z)
need to be maximised, which can be achieved by constructing

the precoder matrix P(z) to support the dominant polynomial

eigenmodes of ~H(z)H(z). We �rst attempt this directly using

the H(z).

A. Direct Approach

The space-time covariance matrix R = ~H(z)H(z) in the

denominator of the MMSE cost function is characterised in

Fig. 4. The decomposition of this matrix is an inportant �rst

step to construct the precoder such that the denominator of




