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Università degli Studi di Udine

Via delle Scienze, 208, 33100 - Udine -Italy

E-mail: {nicola.moret, salvatore.dalessandro, tonello}@uniud.it

Abstract—In this paper we study the performance and com-
plexity tradeoff of filtered multitone modulation (FMT) in sta-
tistically representative indoor radio channels. We consider two
design approaches. The first one is based on the use of long
prototype pulses with high sub-channel frequency confinement.
The second one follows an orthogonal design with minimal length
pulses (down to the length of one transmitted symbol) and
good frequency confinement. We present a simulation analysis
showing that the FMT system achieves higher capacity than
conventional OFDM. This is true also for FMT with minimal
length pulses whose complexity is almost comparable to that
of orthogonal frequency division multiplexing (OFDM) with an
identical number of sub-channels.

I. INTRODUCTION

Filtered multitone (FMT) modulation is a form of multi-

carrier (MC) transmission [1] that is used for signaling over

wide band frequency selective fading channels. More in detail,

FMT is a digital realization of multi carrier modulation that

deploys uniformly spaced sub-carriers and identical prototype

pulses across all the sub-channels. It has been originally

proposed for application over broadband wireline channels [2],

and subsequently it has also been investigated for wireless

[3],[4] and power line [5], [6] applications. Orthogonal fre-

quency division multiplexing (OFDM) can also be viewed as

an FMT scheme that deploys rectangular time domain filters.

In general, FMT privileges the sub-channel frequency con-

finement rather than the time confinement, as for example

OFDM does. With frequency confined pulses the sub-channels

are quasi-orthogonal to each other minimizing the inter-carrier

interference (ICI). The inter-symbol interference (ISI), intro-

duced by the signaling over a frequency selective channel,

can be mitigated with sub-channel equalization. We refer to

this design approach as frequency confined FMT (FC-FMT).

Clearly, the frequency confinement, characteristic of FC-FMT,

requires long prototype pulses that may considerably increase

the implementation complexity [3],[4],[7],[8].

Another approach to design an FMT system is based on

the use of time confined pulses, i.e., it is possible to design
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a perfectly orthogonal FMT system (with an ideal channel)

yet using very short prototype pulses. A method for such a

design has been presented in [9]. This method allows the FMT

system to deploy minimal length pulses (down to that of one

transmitted symbol) that are maximally confined in frequency.

We refer to this design approach as time confined FMT (TC-

FMT). Clearly, the implementation complexity of TC-FMT is

lower than that of FC-FMT.

In this paper, we study the performances of FC-FMT and

TC-FMT over typical WLAN channels [10]. We show that

FC-FMT that uses long root-raised-cosine pulses yields better

performance, in terms of achievable rate, than TC-FMT. How-

ever, we discuss the efficient implementation of both schemes

and we highlight that FC-FMT has higher implementation

complexity. The performances benchmark is done considering

OFDM as baseline system. Numerical results show that in

many cases OFDM achieves a rate that is lower than that of

both FC-FMT and TC-FMT. Furthermore, since TC-FMT uses

minimal length prototype pulse, its implementation complexity

is very similar to that of OFDM.

The paper is organized as follows. In Section II, we de-

scribe the general system model. In Sections III and IV, we

briefly recall the FC-FMT and the TC-FMT systems, and

in Section V, we analyze their computational complexity.

Then, in Section VI, we report numerical results showing

the comparison in terms of achievable rate and complexity

between FC-FMT and TC-FMT. Finally, in Section VII, the

conclusions follow.

II. SYSTEM MODEL

We consider a general MC scheme where the high rate

discrete-time transmitted signal, at the output of the synthesis

filter bank (FB), is obtained by the modulation of � data

streams at low rate �(�)(��), with � ∈ {0, ⋅ ⋅ ⋅ ,� − 1}, that

belong to a QAM constellation. The transmitted signal can be

written as

�(�) =

�−1
∑

�=0

∑

ℓ∈ℤ

�(�)(�ℓ)�(�)(�−�ℓ), (1)



where � is the number of sub-channels, � = � + � is the

sampling-interpolation factor, with � equal to the overhead

(OH) duration in samples. According to (1), the signals

�(�)(��) are upsampled by a factor � and are filtered by

the modulated pulses �(�)(�) = �(�)�−��
� , with �(�) being

the prototype filter of the synthesis bank and� ��
� = �−� 2�

�
��.

Then, the sub-channel signals are summed and transmitted

over the channel.

We use the IEEE 802.11 TGn [10] channel model. This

model generates channels belonging to five classes labeled

with B,C,D,E,F. Each class is representative of a certain

environment, e.g., small office, large open space/office with

line of sight (LOS) and non LOS (NLOS) propagation. Both

small scale multipath fading and large scale path loss fading

as a function of the distance are taken into account. Although

the model allows us to consider MIMO channels, we restrict

ourselves to the case of single-transmit/single-receive antenna.

For a detailed description of the model, see [10].

The received signal �(�) is analyzed with a filter bank hav-

ing modulated sub-channel pulses ℎ(�)(�) = ℎ(�)�−��
� with

ℎ(�) being the prototype pulse of the analysis bank, and are

downsampled by a factor � . Therefore, before equalization,

the signal received in the �-th sub-channel is given by

�(�)(��) =�(�)(��)�
(�)
��� (0) + ���

(�)(��) (2)

+ ���(�)(��) + �(�)(��) .

In (2), �
(�)
��� (0) denotes the amplitude of the data of interest,

whereas, ���(�)(��), ���(�)(��), and �(�)(��) respec-

tively denote the ISI, the ICI and the noise term experienced

in sub-channel �. The interference terms are in general present

when transmitting through a frequency selective channel. They

can be mitigated with some form of equalization. The filter

bank design aims at reaching a tradeoff between ISI and ICI.

While the presence of both ISI and ICI requires a multi-

channel equalizer, the presence of only ISI allows us to use

sub-channel equalization. In our analysis we consider the use

of linear sub-channel equalization only. Therefore, the signal

after the sub-channel equalization can be written as

�
(�)
��(��) =�

(�)(��)�
(�)
��(0) + ���

(�)
��(��) (3)

+ ���
(�)
��(��) + �

(�)
��(��) ,

where we use the subscript EQ to denote the dependence from

the equalizer. The terms �
(�)
��(0), �

(�)
��(��), ���

(�)
��(��)

and ���
(�)
��(��), respectively denote the peak of the overall

impulse response, the noise term and the interference terms at

the �-th sub-channel equalizer output.

In order to evaluate the system performances, we assume

parallel Gaussian channels and independent and Gaussian dis-

tributed input signals, which render ISI and ICI also Gaussian

(cf. e.g. [11]). Therefore, the achievable rate in bit/s for a given

channel realization, after sub-channel equalization, is given by

�(�) =
1

(� + �)�

�−1
∑

�=0

log2

(

1 + ����
(�)
��(�)

)

, (4)
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Fig. 1. Examples of frequency response and temporal autocorrelation of
FC-FMT and TC-FMT pulses.

where ����
(�)
��(�) denotes the signal over interference plus

noise ratio experienced in sub-channel � when we transmit

using an overhead of � samples. It is defined as

����
(�)
��(�) =

�
(�)
U,��(�)

�
(�)
�,�� + �

(�)
I,��(�)

, (5)

where �
(�)
U,��(�), �

(�)
I,��(�) and �

(�)
�,�� respectively denote the

useful, the interference, and the noise power terms on sub-

channel � after the equalization stage.

Formula (4) shows that the achievable rate is a function of

the OH. That is, for each channel realization, the optimal OH

can be found as

���� = argmax
�∈{0,...,��ℎ−1}

{�(�)} , (6)

where ��ℎ denotes the channel duration in samples. In (4), �
denotes the sampling period.

It is worth noting that all the modulated filter bank schemes

can adapt the OH to the channel condition as described by

(6). Clearly, the OH adaption increases the implementation

complexity. This is because, the achievable rate (4) is not a

convex function of the OH and thus the optimal OH has to be

found doing an exhaustive search (6).

In the next sections we derive FC-FMT and TC-FMT from

the general filter bank scheme.

III. FREQUENCY CONFINED FMT (FC-FMT)

In FC-FMT the sub-channel symbol period is � and

the analysis pulse is matched to the synthesis pulse, i.e.,

ℎ(�) = �(∗)(−�). A distinctive characteristic of FC-FMT is

that the prototype pulse is designed to obtain high frequency

confinement [2], namely long prototype pulses allow FC-

FMT to experience a negligible ICI term. Therefore, the

equalization task focuses on canceling the ISI term. This

observation justifies our assumption of considering only sub-

channel equalization. In Fig. 1, we depict an example of



Fig. 2. FMT efficient implementation.

frequency response and temporal autocorrelation for a FC-

FMT pulse. More precisely, the pulse for FC-FMT is a root-

raised cosine with length 20� and roll-off 0.2.

When showing numerical results, for FC-FMT, we consider

MMSE fractionally spaced sub-channel equalization [12] with

a linear equalizer of 20 taps. Numerical results show that

more than 20 taps do not yield significant improvements.

Furthermore, we deploy a truncated root-raised-cosine pulse

with rolloff equal to (� −�)/� and length 20� . Clearly,

the resulting scheme is complex, but we consider it to report,

say, the best attainable performance.

Regarding the choice of the OH (namely � = � − � ),

as previously stated, the optimal OH should maximize the

achievable rate as in (6). To diminish the computational

complexity, in our previous work [13] we have found

a limited set of sub-optimal OH values. This set

has been found studying the statistics of the optimal

OH (6). We have denoted such set as ℙ��−��� =
{

�
(99%)
3,��−��� , �

(99%)
10,��−��� , �

(99%)
30,��−��� , �

(99%)
60,��−���

}

,

where the subscripts {3, 10, 30, 60} denote the distance

between transmitter and receiver. The use of the limited set of

OH values reduces the OH adaptation to a limited search over

the set ℙ��−��� , i.e., ���� = argmax�∈ℙ��−���
{�(�)}.

IV. TIME CONFINED FMT (TC-FMT)

The TC-FMT scheme can be obtained from the general

system model simply substituting the prototype pulse �(�) =
ℎ∗(−�) with an FMT orthogonal pulse having minimal length.

These pulses satisfy the conditions given by the following

system of equations
[

�(�) ∗ ℎ(�)
]

(��) = �� ��−�, (7)

∀(�, �) ∈ {0, ⋅ ⋅ ⋅ ,� − 1}, ∀� ∈ ℤ,

where we denote with �� the Kronecker delta. Since the solu-

tion of the system (7) is not trivial, a significant simplification

can be achieved considering MC systems with interpolation-

sampling factor � = (�0/�0)� with �0 and �0 relatively

prime integers [9]. We can choose �0 = �0 + 1 such that

we minimize the amount of redundancy, i.e., minimize the

ratio �/� = �0/�0. The solution of this system is not

unique, thus, we parameterize the filter coefficients with a

minimal set of parameters �. In order to have maximally

frequency confined pulses, we choose pulses that minimize the

mean squared error between the pulse spectrum and a target

frequency response:

argmin
�

∫ .5

−.5

∣�(�, �)−�(�)∣2��, (8)

where �(�, �) is the frequency response of the prototype

pulse �(�) as function of the parameters �, and �(�) is the

target frequency response. In order to keep low the system

implementation complexity, the family of filters adopted in this

work has minimal length equal to one symbol duration, i.e.,

�� = � , where �� is the prototype pulse length. Furthermore,

the interpolation factor is equal to � = 2�+1
2� � . Fig. 1

shows an example of minimal length orthogonal prototype

pulse. More details regarding the filter design for TC-FMT

are reported in [9].

As for FC-FMT, also for TC-FMT the optimal choice

of � should target the achievable rate maximization (4).

Due to the fact that the family of filters that we deploy

has an OH � = {�/2�} with � integer, we limit the

OH search over the set ℙ��−��� = {�/2�∣ � = 2, 3, 4}.

Therefore, the sub-optimal OH is chosen according to ���� =
argmax�∈ℙ��−���

{�(�)}.

Finally, we notice that when showing numerical results for

TC-FMT we use single tap zero forcing sub-channel equalizer.

V. COMPLEXITY COMPARISON

In this section we want to evaluate and compare the compu-

tational complexity among the considered FMT schemes. We

evaluate the complexity exploiting the efficient implementation

scheme presented in [14] and here depicted in Fig. 2. The com-

plexity is measured in complex operations per sample. With

reference to Fig. 2, the transmitter comprises the following

operations: the data streams �(�)(��) are processed by an

� -point IDFT block, the output block is cyclically extended

to a block of size �1 = �0� =�0� = �.�.�.(�,�), and

filtered, after a delay, with the � -order polyphase components



of the prototype pulse, e.g., ��(��) = �(�� + �). Finally,

the filter outputs are sampled by a factor �0 and parallel-to-

serial converted. At the receiver side, the received signal is

serial-to-parallel converted with a converter of size �1, the

output signals are upsampled by a factor �0, filtered with the

N-order polyphase components of the prototype pulse, e.g.,

ℎ−�(��) = ℎ(�� − �). Then, after a delay, the periodic

repetition with period � of the block of coefficients of size

�1 is applied. Finally, the � -point DFT is performed.

In order to derive a general expression for the computational

complexity, we consider for simplicity pulses with length

� = ��1, with � integer. Thus, the IDFT and DFT blocks

have a computational complexity equal to �� ���2(�),
where � takes into account the FFT algorithm used. The cyclic

extension and the delays stage do not require any complex

operation. Each filter of the polyphase network (PN) has lenght

�� = �/� , with � the length of the prototype pulse. If the

filter is combined with the sampler with factor �0, exploiting

the polyphase decomposition, the total number of operations

is (2��−1)/�0. Otherwise, if the filter is combined with the

up-sampler with factor �0, the complexity becomes (2�� −
�0)/�0 [15]. Each PN deploys �1 parallel branches. Thus,

the total operations for the synthesis PN is�1 (2��−1) /�0,

and for the analysis PN is �1 (2��/�0 − 1). Finally, the

periodic repetition block requires �1 operations. The total

number of operations per sample for the synthesis and analysis

stages is the order of:

(�� log2(�) + 2�)

�
. (9)

Considering the TC-FMT scheme and taking into account

that the prototype pulse has length � = � and only 2�
coefficients of the prototype pulse differ from a constant, (9)

can be simplified into (�� log2� + 2�) /� .

Since OFDM deploys a constant rectangular pulse, its

complexity is equal to (�� log2�) /� .

As an example for a system with � = 1.2, �=64 and

�=80, the complexity is equal to {45.76; 6.56; 5.76} for FC-

FMT with filter length � = 20� , TC-FMT, and OFDM

respectively.

VI. NUMERICAL RESULTS

To obtain numerical results, we have chosen the following

system parameters that are essentially those of the IEEE

802.11 standard [16]. The MC system uses � = 64 sub-

channels with a transmission bandwidth of 20���. The

signal is transmitted with a constant power spectral density

(PSD) of −53 ���/��. At the receiver side, we add white

Gaussian noise with PSD equal to −168 ���/��. Thus, the

SNR, without path loss and fading, on each sub-channel is

115 ��. To show the performance of both FC-FMT and TC-

FMT, we use an OFDM baseline system which deploys a

fixed CP of 0.8�� (� = 16 samples), that is the value of

CP employed in the IEEE 802.11 standard [16].

Fig. 3 shows the complementary cumulative distribution

function (CCDF) of the achievable rate (4) obtained using
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Fig. 3. Achievable rate CCDFs obtained using TC-FMT with different
prototype pulses and OFDM. The employed channel classes are the B and C.
The distance between transmitter and receiver is set to 10 � and 60 �.
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Fig. 4. Achievable rate CCDFs obtained using TC-FMT and FC-FMT with
optimized OHs and FC-FMT with fixed OH equal to 0.8��. The employed
channel classes are the B and C. The distance between transmitter and receiver
is set to 10� and 60�.

TC-FMT with OH factors � = {0.2, 0.4, 0.8}�� and the

baseline OFDM system. For the sake of readability, we only

show results for channel classes B and C, and for distances

between transmitter and receiver equal to 10� and 60�.

More results for OFDM can be found in [13]. From Fig. 3

we observe that the optimal TC-FMT OH factor depends on

the distance between transmitter and receiver. In fact, we see

that for distances of 60� and 10�, the optimal OH factor

equals 0.2�� and 0.4�� respectively. This behavior is simply

explainable observing that when we increase the distance, the

path loss increases or equally the SNR decreases. In such a

case, the noise dominates on the interference term (see (5)).

It follows that a long pulse is useless because it would only

decrease the achievable rate (see (4)) without increasing the



SINR. On the contrary, when the distance is short, the SNR

is high and thus the interference dominates on the noise. In

such a case is important to reduce the interference and thus to

use long pulses.

From Fig. 3, we can also observe that TC-FMT outperforms

the OFDM baseline system. More precisely, with probability

0.95, the use of TC-FMT gives a gain in achievable rate of

20% and 21% respectively for channel classes B and C when

the distance equals 60�. Whereas, when the distance equals

10�, the gain is equal to 8% and 1% for channel classes B

and C respectively.

Fig. 4 shows the achievable rate CCDF obtained using

TC-FMT and FC-FMT both with optimized OH, and FC-

FMT with fixed OH equal to � = 0.8��. The OHs are

optimized doing the limited search over the sets ℙ��−��� =
{0.2, 0.4, 0.8} �� (see Section IV), and ℙ��−��� =
{

�
(99%)
10,��−��� = 0.5��, �

(99%)
60,��−��� = 0.2��

}

(see Sec-

tion III). The used channel classes are the B and the C, and the

distances between transmitter and receiver are equal to 10�
and 60�. As we can see, FC-FMT with optimized OH that

deploys sub-channel equalization outperforms both FC-FMT

with fixed OH and TC-FMT. More precisely, with probability

equal to 0.95, FC-FMT with optimal OH outperforms TC-

FMT by 37% and 35.3% at 60�, and by 10% and 17% at

10� for channel classes B and C respectively. On the other

side, FC-FMT with fixed OH outperforms TC-FMT by 21%
and 21.5% at 60� and by 3% and 9.5% at 10� for channel

classes B and C respectively. Clearly, the improvement given

by the use of FC-FMT is paid in terms of computational

complexity. In fact, as explained in Section V, FC-FMT

substantially increases the complexity w.r.t. TC-FMT.

VII. CONCLUSIONS

We have analyzed the performance of two different classes

of filtered multitone modulation, one that uses frequency

confined pulses (FC-FMT), and the other one that uses time

confined orthogonal prototype pulses (TC-FMT). We have

shown that over typical WLAN channels both FMT systems

outperform the OFDM scheme used in the WLAN standard.

Furthermore, the simulations show that if we can afford

increased computational complexity, FC-FMT provides sig-

nificant gains in terms of achievable rate, w.r.t. both TC-FMT

and OFDM.
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