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ABSTRACT 

 
This paper deals with the design and implementation of a 
Filtered Multitone (FMT) modulation system. FMT generalizes 
the popular OFDM scheme through the deployment of sub-
channel shaping filters. We address the implementation problem 
and we describe (and compare in terms of complexity) two 
efficient implementation methods in the time domain (TD) and 
another one in the frequency domain (FD). We consider the 
design of the prototype pulse and we propose to synthesize it in 
the FD with a small number of frequency components. This 
allows to efficiently implement the FMT scheme through the FD 
architecture. A simple FD equalization scheme is also proposed 
and its performance is evaluated in typical wireless fading 
channels. The results show that FMT performs better than 
OFDM with and without channel coding.  
 

1. INTRODUCTION 
 
In this paper we consider design and implementation aspects of 
multicarrier modulation based architectures [1]. The main idea 
behind these architectures is to convert a sequence of data 
symbols at high rate, into a number of sub-sequences at low rate. 
Each low rate sequence is transmitted through a sub-channel that 
is shaped with an appropriate filter centered on a given sub-
carrier. In particular, we consider Filtered Multitone (FMT) 
modulation [2] that is a discrete time implementation of a 
multicarrier system where sub-carriers are uniformly spaced and 
the sub-channel pulses are identical (Fig. 1). Discrete Multitone 
Modulation (DMT) (also referred to as orthogonal frequency 
division multiplexing (OFDM)) can be viewed as an FMT 
scheme  that deploys rectangular time domain filters. FMT 
modulation can be deployed for transmission over broadband 
frequency selective channels both in wireline [2] and in wireless 
scenarios [3]-[5]. The channel frequency selectivity introduces 
intercarrier (ICI) and intersymbol (ISI) interference at the 
receiver. The design of the sub-channel filters, and the choice of 
the sub-carrier spacing in an FMT system, aims at subdividing 
the spectrum in a number of sub-channels that do not overlap in 
the frequency domain, such that we can avoid the ICI and get 
low ISI contributions. In a DMT system the insertion of a cyclic 
prefix longer than the channel time dispersion is such that the 
ISI and ICI are eliminated, and the receiver simplifies to a 
simple one-tap equalizer per sub-channel. The key aspects of 
FMT modulation are the design of the prototype pulse, the 
efficient implementation of the synthesis/analysis filter banks, 
and finally the design of the multi-channel detector (equalizer). 

In this paper we focus on the efficient implementation. We 
review the implementation proposed by Cherubini et al. [2] that 
is obtained by the polyphase decomposition of the signals. Then, 
we propose other two implementations one of which is in the 
time domain (TD) and another in the frequency domain (FD). 
We propose a FD design of the prototype pulse. Finally, we 
describe a simple FD equalizer and we report a performance 
comparison with OFDM over typical wireless fading channels. 
 

2. FMT MODULATION SCHEME  
 
An FMT modulation based architecture is depicted in Fig. 1 
where we assume the following system parameters: T  is the 
transmission period; 1/W T=  is the transmission bandwidth; 
M  is the number of sub-channels; 0T NT=  is the sub-channel 
symbol period; kf  is the k-th sub-carrier; ( )g nT  is the 
prototype pulse; 0/R M T=  is the overall transmission rate in 
symbol/s. The transmitter (synthesis stage) generates the signal  
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where 0( )ka lT  is the sequence of complex data symbols, e.g., 
M-QAM, that is transmitted on sub-channel 0,..., 1k M= −  at 
rate 01/T . If the sub-carrier spacing 1k kf f −−  is larger than 01/T  
the scheme is referred to as non-critically sampled FMT, 
otherwise if 1 01/k kf f T−− =  it is referred to as critically 
sampled FMT [2]. The implementation of the modulator 
according to (1) is inefficient. Assuming that the prototype pulse 
is FIR with gL  coefficients, it requires a number of complex 
operations (sums and multiplications) per output coefficient 

( )x iT  equal to 2 / 1gM L N M⎢ ⎥ + −⎣ ⎦ . The signal (1) is digital-to-

analog converted and transmitted over the communication 
channel (after RF conversion, in wireless applications). The 
received lowpass signal is analog-to-digital converted to obtain 

( )y iT  and then it is passed through an analysis filter bank with 
prototype pulse ( )h nT . The sampled outputs at rate 01/T  are 
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If the analysis pulse is FIR with hL  coefficients, (2) requires 

02 /hML T  operations per second. 
 In the following sub-sections we describe three possible efficient 
implementations two of which are in the TD and one in the FD. 
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3. BASELINE IMPLEMENTATION: METHOD A 
 
Let us assume the sub-carriers to be /( )kf k MT= . Then, 
following [2], if we compute the polyphase decomposition of (1) 
with period 1 0T MT T= ≤  we obtain 
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With the following definitions 
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where .⎢ ⎥⎣ ⎦  and %  are the floor and remainder functions, we 
obtain 
 ( ) ( ) ( )

1 0 0 0 1( ) ( ) ( ; ).i i i
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Therefore, the FMT signal (Fig. 2) can be synthesized via an M-
point inverse discrete Fourier transform (IDFT), followed by 
time-variant filtering at rate 01/T  with the pulses ( )

0 1( ; ),ig lT mT  
and finally P/S conversion. Note that the polyphase components 
of the prototype pulse are cyclically time-variant if 0 1T T>  with 
period 1 0. . .( , ).l c m T T   
 This implementation has been proposed in [2]. Assuming to 
implement the IDFT with an inverse fast Fourier transform 
(FFT), the scheme requires 2 0( 2 / 1) /gMLog M N L N Tα ⎢ ⎥+ −⎣ ⎦  

operations per second where 1α ≥  is a constant related to the 
FFT algorithm.   
 The analysis filterbank (2) can be implemented as follows  
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 ( )
0 1 1 1 0( ) ( ; )ih lT mT iT h pT mT lT−− − = −  (10) 

 /    ( )% .p lN M q lN M= =⎢ ⎥⎣ ⎦  (11) 

Therefore, the receiver filter bank (Fig. 2) can be implemented 
with a S/P conversion of the received signal ( ),y iT  low-rate 
filtering with the cyclically time-variant pulses ( )

1 0( ; ),ih mT lT−  
followed by an M-point DFT. The receiver filter bank 
implementation requires 2 0( (2 / 1)) /hMLog M M L M Tα + −⎢ ⎥⎣ ⎦  
operations per second.  
 It follows that this implementation of the FMT 
transmit/receive filter banks is advantageous compared to the 
direct implementation in (1)-(2), and it is simple if the synthesis 
and analysis prototype pulses are realized with FIR filters with a 
small number of coefficients. 

4. TD IMPLEMENTATION: METHOD B 
 
Herein we propose an alternative way of implementing the 
synthesis/analysis stages. It is obtained by computing the 
polyphase decomposition of (1) with period 2 2 ,T M T= assuming 

2 2 2. . .( , ) ,M l c m M N K M L N= = =  
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where ( )
0{ ( )}iA lT  are obtained by the M-point IDFT of 

( )
0{ ( )}ka lT  with a cyclic extension of 2M M−  elements. 

Therefore, the FMT signal (Fig. 3) can be synthesized through 
an M-point DFT, cyclic extension of the outputs, low-rate 
filtering with the pulses ( )

0 0( ) ( ),ig lT g iT lT= +  sampling with 
period 2 0 ,L T  and P/S conversion. The complexity of this scheme 

accounts for 2 0( 2 / 1) /gMLog M N L N Tα ⎢ ⎥+ −⎣ ⎦  operations per 

second (identical to Method A).  
 Similarly, the analysis filter bank can be implemented as 
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Therefore, the FMT signal (Fig. 3) can be analyzed by low-rate 
filtering with pulses ( )

0 0( ) ( ),ih lT h lT iT− = −  followed by an M2-
point DFT. This filterbank implementation requires  

2 2 2 2 0( (2 / 1)) /hMLog M M L M Tα + −⎢ ⎥⎣ ⎦  operations per second 
that are less than those in Method A if K2>2. 
  

5. FD IMPLEMENTATION: METHOD C 
 
Let us assume the prototype pulse to have duration 3 3 ,T M T=  
with 3 3 ,M L N=  and let us assume the sub-carriers to be 

3 0 3( ) /kf kK k M= +  with 0,..., 1k M= −  and 3 3/ .M M K= ⎢ ⎥⎣ ⎦  
Then, we can write 

 3 0
3

( )
3 3 3

21 ( )
( )

0 3 0
0

( ) ( )   0,..., 1,  

( ) ( ) .

i

M j i kK k
Mk

l k

x mT x iT mT i M m

a lT g iT mT lT e
π∞ − +

=−∞ =

= + = − ∈

= + −∑ ∑

Z
 (15) 

Let us denote with ( )nG  the DFT with 3M  points of ( )g iT ,  
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If for easy of notation we assume 0 0,k =  (15) can be 
manipulated as follows 
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Finally, 
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This implementation is attractive when the prototype pulse is 
synthesized in the frequency domain with a small number of 
non-zero frequency components, i.e., ( ) 0nG ≠  for 

30,..., 1n K= − . In such a case we can write 
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Therefore, the FMT signal (Fig. 4) can be synthesized by 
weighting the block of K3 frequency components of the prototype 
pulse with each of the M data symbols to obtain (20). Then, we 
run an M3-point IDFT, followed by an overlap-and-add operation 
at rate 01/T  according to (18). The evaluation of the complexity 
of this implementation yields 3 2 3 3( 3 ) /L Log M L Tα +  operations 
per second. Although this method may involve a higher number 
of operations than the Methods A/B, it can be easily and flexibly 
realized in hardware via an FFT and a overlap-and-add operation.   
 Now, let us turn the attention to the analysis filter bank (2). 
Again, with a frequency domain approach we can write 
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where ( )
0( )nY mT  and ( )nH  are the M3-point DFT of 

0( )y mT iT+  and ( )h iT . The equality holds for Parseval 
theorem under the assumption of a pulse with duration 3M T  
and K3 non-zero frequency components. This method (Fig. 4) 
requires 3 2 3 3( 2 ) /L Log M L Tα +  operations per second. 
  

6. DESIGN OF THE PROTOTYPE PULSE 
 
The design of the prototype pulse is a key issue. To fulfill the 
orthogonality conditions we look for pulses that are band limited 
and have Nyquist autocorrelation. A straightforward choice is to 
use, for instance, a truncated root-raised-cosine pulse. 
Truncation gives rise to side lobs (thus, to increased ICI) and to 
non-perfectly raised cosine autocorrelation (thus, to ISI). 
However, the FIR prototype pulse makes the TD implementation 
feasible. Vice-versa having in mind the FD implementation, we 
may want to synthesize the pulse in the FD with a finite number 
of frequency components. We start by choosing a pulse that 
belongs to the Nyquist class with roll-off ρ  and Nyquist 
frequency 01/(2 )NF T= . Let ( )H f  be its frequency response. 
The 3K  frequency components of the pulse are chosen 

accordingly to ( ) ( )n nG f H f=  where the samples are taken at 
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If we use the FD implementation of the FMT scheme with an 
IDFT of 3M  points, we have that 3 3( 3),M N K= −  

3 3( 3)L K= −  since 3 31/( ) /( 3) 1/( ),F NT K M T= − =  and 

3 3/M M K= ⎢ ⎥⎣ ⎦ . Now, we have some degree of freedom in 

choosing the function ( )H f  and the roll-off factor ρ . Herein, 
we propose a conventional root-raised-cosine spectrum. 
Furthermore, after fixing 3K , we choose the roll-off as follows 

 3 3/( 3) 1.K Kρ = − −  (23) 
With the above design the overall transmission rate equals 

3 3( 3) /( )  /R K K T symb s= −  which increases as 3K  increases. 
In Fig. 5 we plot the impulse response of the prototype pulse for 
K3=7, 11, 19 assuming M3=128. The autocorrelation of the 
synthesized pulse is only approximately Nyquist. Nevertheless, 
the signal to ISI power ratio is very high. For instance, with 

3 11K =  the S/I equals 59.76 dB. For comparison, if we used a 
truncated root-raised-cosine pulse with the same roll-off and 
duration, we would get an S/I of only 35.76 dB.  
 

7. FD EQUALIZATION IN  
FREQUENCY SELECTIVE CHANNELS 

 
We herein model the baseband channel with a discrete time filter 

( )CHg nT  that comprises the effect of the DAC and ADC stages. 
In the wireless context with multipath fading, the channel taps 
are complex with Gaussian distribution. It follows that the 
received signal reads 
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where the k-th sub-channel equivalent impulse response is 
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Assuming the analysis filterbank to be matched to the equivalent 
sub-channel responses, i.e., 
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EQh nT g nT= − , the k-th filter 

output sample reads   
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where the first term represents the useful data contribution, the 
second additive term is the ISI contribution, the third term is the 
ICI contribution, and the fourth term is the noise contribution. 
Further, ( ) ( ) ( )*

0 0( ) * ( )k k k
EQ EQ EQmT g g mTκ −=  is the equivalent sub-

channel autocorrelation. If we assume frequency concentrated 
non-overlapping sub-channels the ICI term is zero. The ISI can 
be mitigated with some form of equalization, i.e., maximum 
likelihood sequence estimation, linear or decision feedback 
equalization [3]-[5]. If the ISI is negligible, we may want to use 
a simple one tap equalizer. To derive a simple detector we 
assume that the prototype pulse has short duration, such that 
convolved with the channel yields an equivalent response with 
time support approximately equal to 3M T . Then, the matched 
filtering operation can take place in the frequency domain as in 
(21) by using 3( )( ) ( )* * ( )*  n kKn n n

EQ CHH G G G−= ≈  where ( )nG  and ( )n
CHG  

are the DFT of the prototype pulse and of the channel. A further 
simplification can be obtained by choosing, e.g., with a 
minimum mean-square-error criterion, a single channel weight 
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( )kH  within a single sub-channel k, which corresponds to 
assume the channel flat within a band K3F.  
 

8. NUMERICAL RESULTS 
 
In Fig. 6 we show bit-error-rate (BER) performance of the FMT 
scheme that uses the prototype pulse proposed in Section 6 and 
the FD equalizer in Section 7. We assume a Rayleigh faded 
channel with exponential power delay profile (truncated to 32T) 
with root-mean-square delay spread τ  and a 20 MHz bandwidth 
(as in the WLAN standard IEEE 802.11a). Further, we use 
BPSK signalling, and parameters M3=128, K3=11, M=11. We 
consider also channel coding with a convolutional encoder of 
rate ½ and constraint length 5 that is followed by a random bit-
interleaver, and a S/P converter to produce M bit streams. The 
simple FD equalization scheme is deployed under the 
assumption of knowing the channel. For comparison we report 
also the BER performance of an OFDM (DMT) system that uses 
a 128 point FFT, a cyclic prefix of length 32, and data rate 
identical to the FMT system. The same channel encoder is 
deployed for the OFDM system. Fig. 6 shows that the BER 
performance of the FMT system is good even without channel 
coding. Note also that some frequency diversity exploitation is 
possible also without coding despite the simple equalization 
scheme. On the contrary the uncoded OFDM scheme does not 
provide any diversity gain. With coding there is a deep 
performance improvement in both the FMT and the OFDM 
scheme that is more pronounced for high delay spreads as a 
result of higher frequency diversity. However, the coded FMT 
scheme shows superior performance than the coded OFDM 
scheme still having identical data rate and comparable 
complexity.  
 

9. CONCLUSIONS 
 
We have described and compared in terms of complexity several 
efficient implementations of an FMT scheme. We have proposed 
a FD design of the prototype pulse and a simple FD equalization 
scheme. The performance results show the superiority of the 
proposed FMT scheme compared to conventional OFDM in 
wireless fading channels with and without channel coding.  
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Fig. 1. FMT modulator/demodulator with inefficient implementation. 
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Fig. 2. FMT modulator/demodulator implemented with Method A . 
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Fig. 3. FMT modulator/demodulator implemented with Method B. 
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Fig. 4. FD implementation of the FMT system (Method C). 
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Fig. 5. Prototype pulse synthesized in the FD with K3 frequency components. 
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Fig. 6. Performance comparison between uncoded/coded FMT and OFDM. 
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