
 

 
Abstract—We present a general analysis framework to 

analyze the performance of Filtered Multitone (FMT) modulation 
systems in time-frequency selective fading channels. FMT is a 
generalization of the OFDM scheme that deploys sub-channel 
shaping pulses. The results are specialized for several pulses: 
root-raised cosine, Gaussian, sinc and rectangular (OFDM). They 
allow to benchmark the multitone system and understand how 
robust it is to frequency selective time-variant fading. An analysis 
both in terms of SIR and bit-error-rate is made. Remarks on the 
prototype pulse design are also reported. The better sub-channel 
spectral containment of FMT yields increased robustness 
compared to OFDM. 

 
Index Terms—DMT modulation, FMT modulation, fast fading, 

frequency selective fading, OFDM. 

I. INTRODUCTION 
 FMT is a discrete-time implementation of multicarrier 
modulation that uses uniformly spaced sub-carriers and 
identical sub-channel pulses [1]. Orthogonal Frequency 
Division Multiplexing (OFDM) can be viewed as an FMT 
scheme that deploys rectangular time domain filters [2]. FMT 
has been originally proposed for application in broadband 
wireline channels [1], and subsequently it has been 
investigated for application in wireless channels [3].  
 The main research problems related with FMT are the 
efficient digital implementation, the design of the prototype 
pulse, the development of equalization schemes, and in 
general the performance analysis. A popular efficient 
polyphase filter bank architecture has been proposed by 
Cherubini et al. in [1]. The channel time-frequency selectivity 
may introduce inter-carrier interference (ICI) and ISI that can 
be minimized with the design of optimal time-frequency 
confined pulses [4]-[5]. Simplified sub-channel equalizers 
have been devised in [3]. Although multitone systems are 
robust to channel frequency selectivity, they are sensitive to 
carrier frequency offsets and phase noise, as well as to fast 
time variations of the channel impulse response [6]-[7]. An 
extensive literature exists on the performance analysis of 
multicarrier systems in time-variant frequency selective fading 
channels. However, most of this work focuses on the OFDM 
solution where fast fading introduces ICI [8], while dispersive 
fading  introduces  both ICI  and  ISI when  the cyclic prefix is  
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Fig.1. FMT transmission system. 

 
shorter than the channel duration [7], [9]. In [10] we have 
studied the performance limits of FMT modulation, and we 
have shown that FMT can provide both frequency and time 
diversity gains when optimal multi-channel equalization is 
used. However, if complexity is an issue, it is likely that linear 
single channel equalizers are used. In this case the ICI can 
limit the performance. A performance comparison between 
FMT and OFDM has been done in [11]. In our paper, we 
provide a more general framework to the analysis of the SIR 
power ratio in FMT systems over time-variant frequency 
selective fading channels. The SIR can be used to predict the 
bit-error-rate (BER) performance of FMT and OFDM with 
single tap sub-channel equalization. Analytical results about 
the use of a root-raised cosine pulse, or a rectangular pulse 
(OFDM) have been reported in [12]. In this paper we derive 
quasi closed form expressions for the SIR when using a sinc 
pulse (ideal FMT) and a Gaussian pulse. SIR comparisons are 
made in Section IV. The SIR analysis can guide the design of 
the prototype pulse and the choice of the system parameters. 
This is done in Section V. BER comparisons are made in 
Section VI. 

II. SYSTEM MODEL WITH FMT MODULATION 
 An FMT modulation based architecture is depicted in Fig.1 
where we assume the following system parameters1: T  is the 
transmission period; 1/W T=  is the transmission bandwidth; 
M  is the number of sub-channels; 0T NT=  is the sub-
channel symbol period; /kf k MT=  is the k-th sub-carrier; 

( )g nT  is the prototype pulse; 0/R M T=  is the overall 
 

1 T  is assumed to be the time unit. rect( ) 1t =  for 0 1t≤ < , and zero 
otherwise. (.)Frep  denotes the periodic repetition with period .F  
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transmission rate in symbol/s. The transmitter (synthesis stage) 
generates the signal  
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where ( )
0( )ka lT  is the sequence of complex data symbols, e.g., 

M-QAM, that is transmitted on sub-channel 0,..., 1k M= −  at 
rate 01/ .T If the prototype pulse has confined frequency 
response with bandwidth 01/ T  and roll-off ,α  a frequency 
guard equal to 1/ (1 ) /α= − +Gf MT NT  exists between sub-
channels.  
 In this paper we specialize the analysis of performance for 
the following prototype pulses: 

 ( ) { }0 0 1/ 0( ) sinc / , ( ) rect( ) ;= = Tg nT nT T G f T rep fT  

 ( ) { }0 0 1/ 0( ) rrcos / , ( ) RRCOS( ) ,= = Tg nT nT T G f T rep fT
where  rrcos( )t  denotes the impulse response of a root-
raised cosine pulse with roll-off factor ,α  and 
RRCOS( )f  is the Fourier transform of the pulse [8]; 
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with 2 / ln 2σ π= B  and 3 0= dBB f T  being the equivalent 
bandwidth of the Gaussian pulse.  

It is interesting to note that (1) allows to represent also a 
cyclically prefixed (CP) OFDM signal when we fix the sub-
carrier spacing at 1/ ,MT  and we define the prototype pulse as 

( )0( ) rect / .g nT nT T=  

A. Receiver Filter Bank Output  
 The signal (1) is digital-to-analog converted and 
transmitted over the communication channel (after RF 
conversion). The received lowpass signal is analog-to-digital 
converted to obtain ( ),y iT  and then it is passed through an 
analysis filter bank with prototype pulse ( ).h nT  The sampled 
output at rate 01/ T  corresponding to sub-channel k is 

 2( )
0 0( ) ( ) ( ).kj f iTk

i

z lT y iT e h lT iTπ−

∈

= −∑
Z

 (2) 

In FMT the analysis pulse is matched to the synthesis pulse, 
i.e., *( ) ( ).h nT g nT= −  In CP-OFDM the analysis pulse is 

( )( ) rect /h nT nT MT= −  with 0 ( ) .MT T M Tµ≤ = +  Using 
this analysis pulse corresponds to discard the cyclic prefix of 
length µ  samples at the beginning of the received block. Note 
that in CP-OFDM there is a sub-channel SNR penalty equal to 

/M N  compared to FMT due to a receiver pulse that is not 
matched to the transmit pulse [10].  
 We model the baseband channel with a discrete-time time-
variant filter ( ; )CHg nT mT  that comprises the effect of the 
DAC and ADC stages 

 ( ; ) ( ) ( ),CH p
p

g nT mT T nT mT pTα δ
∈Ρ

= −∑  (3) 

where ( )mT pTδ −  is a discrete-time Dirac delta equal to 
1/T  for ,m p=  and zero otherwise. Assuming wide sense 
stationary scattering, the time-variant tap amplitudes ( ),p nTα  

,p∈ Ρ ⊂  can be modeled as stationary complex Gaussian 
processes [8]. Further, with the Clarke’s isotropic scattering 
model [8], the tap amplitudes have zero mean, and correlation 

 *
, , 0( ) ( ) ( ) (2 ),p p p p p p Dr nT E mT mT nT J f nTα α π′ ′ ′ = + = Ω   (4) 

where *
, ( ) ( ) ,p p p pE mT mTα α′ ′ Ω =    while Df  is the 

maximum Doppler, and 0 ( )J t denotes the zero order Bessel 
function of the first kind [13]. Correlation among the T-spaced 
channel taps can be introduced by the filters in the ADC stage 
[8], [10]. The Delay Doppler Spread Power Spectrum is 
obtained by the Fourier transform of (4) and it is equal to [8] 
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It follows that the -thk sub-channel filter-bank output reads 
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where ( )
0( )k lTη  is the Gaussian noise contribution, while the 

equivalent impulse response between the input sub-channel ˆ,k  
and output sub-channel k  is defined as 
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In (7) we use the frequency shifted transmit and receive pulses 
that are defined respectively as 
 2 2( ) ( )( ) ( ) ,  ( ) ( ) .k kj f nT j f nTk kg nT g nT e h nT h nT eπ π= =  (8) 

Therefore, the output in the absence of noise can be written as 
( ) ( ) ( , ) ( ) ( )

0 0 0 0 0 0( ) ( ) ( ; ) ( ) ( )k k k k k k
EQz lT a lT g lT lT ISI lT ICI lT= + +  (9) 

where the first term represents the useful data contribution, the 
second additive term is the ISI contribution, the third term is 
the ICI contribution.   

III. EVALUATION OF THE INTERFERENCE  
 We note that the sub-channel sequence of samples at the 
receiver output can be written as 
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where 
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is the contribution of the data stream transmitted on sub-
channel k̂  to the sub-channel analysis filter output of index .k  
We assume the data symbols to be i.i.d. with zero mean, and 
average power ( ) ( ) 2

0| ( ) | .k k
aM E a mT =    Then, the average 

power of (11) equals 
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z a EQ

m
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where the second equality holds with independent zero mean 
data symbols. The computation is independent of the time 
instant 0lT  because we are in stationary conditions, therefore 
we set 0.l =  We refer to (12) as the cross power since it is the 
power of the interference on sub-channel k  that is generated 
by sub-channel ˆ.k  With the tapped delay line channel model, 
the cross power is 
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 It should be noted that if we fix k̂ k=  in (13), and we 
isolate the term that corresponds to 0,=m  we obtain the sub-
channel signal power ( ) ( ) ( , ) 2| (0;0) | . =  

k k k k
a EQS M E g  The sum 

of all other terms yields the ISI power 
( ) ( ) 2| (0) | , =  
k k

ISIM E ISI  while the total power of the ICI can 

be obtained as ˆ ˆ( ) ( , )
ˆ .k k k

ICI zk k
M M

≠
=∑  

 To proceed, we define the following sub-channel product 
function 

 ˆ ˆ( , ) ( ) ( )( ; ) ( ) ( ).k k k kgh iT sT g iT sT h iT= − −  (14) 
Then, we can rewrite (13) as 
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where the deterministic autocorrelation of the sub-channel 
product function (14) is defined as 

ˆ ˆ ˆ( , ) ( , ) ( , )*( ; , ) ( ; ) ( ; ).k k k k k k
gh

i

c iT sT s T T gh iT i T sT gh i T s T
′
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The expression (15) is quite general, but it can be detailed for 
a certain choice of the sub-channel pulses. In certain cases, 
depending on the prototype pulse and the channel, it is 
convenient to calculate the cross power (15) partially in the 
frequency domain using the formula 
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or wholly in the frequency domain with the following formula 
that is obtained via the Parseval theorem 
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                                                                                              (18) 
In (17)-(18) we use  the discrete-time Fourier transform 

ˆ ˆ( , ) ( , ) 2( ; , ) ( ; , ) .k k k k j fnT
gh gh

n

C f sT s T T c nT sT s T e π−′ ′= ∑  It can be 

written as  

 ˆ ˆ ˆ( , ) ( , ) ( , )*( ; , ) ( ; ) ( ; )k k k k k k
ghC f sT s T GH f sT GH f s T′ ′=       (19) 

where ˆ( , ) ( ; )k kGH f sT  is the discrete-time Fourier transform of 
the product function (14), i.e.,  

      ( )ˆ ˆ( , ) ( ) 2 ( )
1/( ; ) ( ) ( ) ,k k k j fsT k

TGH f sT rep G f e H fπ− = ∗ −   (20) 

and ( ) ( ),kG f ( ) ( )kH f  are the Fourier transforms of the 
frequency shifted pulses in (8). In the FMT scheme the 
receiver filter-bank is matched to the transmitter filter-bank, 
therefore, ( ) ( )*( ) ( ).k kH f G f=   
 In the following we specialize the results when the 
prototype pulse is sinc, Gaussian, root-raised cosine and rect. 
In particular, Sections III.A-III.B contain the expressions of 
signal, ISI and ICI power for the case of sinc and Gaussian 
pulses, while in [12] analytical results for root-raised cosine 
and rect pulses are presented.  
 To carry on our derivation we consider the channel to 
exhibit uncorrelated scattering so that the channel taps are 
statistically independent with zero mean, and power 

2[| ( ) | ].p pE iTαΩ =  This assumption is accurate as the signal 
bandwidth gets wide. It allows to simplify the analysis and 
acquire insights about the system performance. Data symbols 
with equal power, ( ) ,k

a aM M=  are also considered. With these 
assumptions the signal-to-interference power ratio (SIR) is the 
same over all sub-channels. When the channel taps are 
correlated the average SIR may vary across sub-channels as, 
for instance, shown in [10]. However, such a variation is small 
for typical wide band channels. 

A. FMT with Sinc Pulse 
 With rectangular frequency domain pulses, the cross power 
equals 

       

24
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It has been obtained starting from (18), and assuming 
stationary uncorrelated channel taps that exhibit a maximum 
Doppler smaller than the sub-carrier spacing, i.e., 1/ .≤Df MT  
 Now, the sub-channel signal power can be computed by 
isolating the term in (21) of index 0,=m  and setting ˆ .=k k  
This yields 
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The power of the sub-channel ISI is obtained from (21) as 
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                                                                                              (23) 
Finally, the total power of the ICI experienced by a given sub-
channel is  
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It should be observed that (24) is always zero for ˆ ≠k k  such 
that no ICI is present if 01/ 1/ ,≤ = −D Gf f MT T  i.e., we use a 
frequency guard between sub-channels larger than the 
maximum Doppler. Otherwise, if 1/< ≤G Df f MT  only two 
adjacent sub-channels can generate ICI. Clearly, fast fading 
can introduce some ISI because it distorts the received sub-
channel pulse. Neither ISI nor ICI is present if the channel is 
flat and static.   

B. FMT with Gaussian Pulse 
 Considering a Gaussian pulse, we obtain that the cross-
channel power is 
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                                                                                              (25) 
where we assume that the pulse frequency response has 
extension smaller than 1/T such that its  unfolded spectrum is 
limited in [ 1/ 2 ,1/ 2 ).− T T     
 Now, the signal power can be obtained from (25) by fixing 

0,=m  and setting ˆ =k k   
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The power of the sub-channel ISI is obtained from (25) and 
equals 
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                                                                                              (27) 
If we suppose that only two adjacent sub-channels can 
generate ICI, the total power of the ICI can be written as 
follows  
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We observe that with Gaussian pulses we always experience 
some degree of ICI and ISI. 

IV. SIR ANALYSIS 
 The results in the previous section allow the evaluation of 
the SIR power ratio on sub-channel k 

 
( )

( )
( ) ( ) .

k
k

k k
ISI ICI

SSIR
M M

=
+

 (29) 

To compute (29) we need to numerically solve some integrals, 
e.g., the one in (18). This can be done by deriving 
equivalences that are obtained via series expansions [13]. To 
gain insight and distinguish between the effect of the delay 
spread and the Doppler spread, we consider first a multipath 
channel with quasi-static fading, and then a time-variant flat 
fading channel. Finally, we discuss the effects of a joint time 
and frequency selective fading channel. The multipath channel 
is assumed to have power delay profile pΩ  with PN  
independent taps. Further, we assume identical signal power 
on all sub-channels. With these assumptions, the SIR is 
independent of the sub-channel index.  

A. Frequency Selective Static Fading Channel 
 Let us assume the channel to be quasi-static but frequency 
selective. In Fig.2.A, we show the SIR as a function of the 
normalized delay spread γ  for the FMT system with sinc, 
Gaussian and root-raised cosine pulses. We assume an 
exponential delay profile  /( ) ,pT T

p e γ−Ω ∼  and we truncate the 
channel at -20 dB. We fix the number of sub-channels 

32M =  and we set the factor 40.N =  It should be noted, that 
the delay spread is Tγ  such that if the transmission bandwidth 
is 1 MHz, it equals 8 sµ  for 8.γ =  
 Fig.2.A shows that the FMT architecture is robust to 
channel frequency selectivity. When the delay spread γ  gets 
larger, the power of the ISI increases, thus the SIR decreases. 
It can be counteracted by using a higher number of sub-
carriers (thus obtaining narrower sub-channels) or, if the SIR 
is particularly low, by using a sub-channel equalizer. The r.r.c. 
pulse and the sinc pulse have similar SIR performance. The 
SIR performance of the Gaussian pulse is rather poor. 
Comparing the curves in Fig.2.A, we can see that for small 
delay spreads CP-OFDM has better SIR performance than 
FMT, because the ISI is handled by the CP. However, as the 
delay spread increases and the channel becomes longer than 
the CP, OFDM also exhibits SIR floors. For instance, the SIR 
difference between OFDM and FMT is only 3 dB for 4.γ =  
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Fig.2. SIR performance as a function of delay spread in frequency selective 
fading and as a function of maximum Doppler in fast fading. FMT with sinc, 

Gaussian and root-raised-cosine pulse and OFDM. 
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Fig.3. SIR performance in a joint time-frequency selective fading channel. 
FMT with root-raised-cosine pulse and OFDM. 

B. Flat Fast Fading 
 Now, let us assume the channel to be flat but time-variant. 
We start this section discussing the results of Fig.2.B where 
we plot the SIR as a function of normalized Doppler .Df T  The 
curves start from 62 10 .Df T −= ×  With bandwidth of 1 MHz 
the Doppler equals 50 Hz when 55 10 .Df T −= ×   
 Comparing the curves in Fig.2.B we see that the r.r.c. pulse 
yields much better SIR performance than the sinc and the 
Gaussian pulse. It should be noted that the autocorrelation of 
the sinc pulse or the r.r.c. pulse is no longer an ISI free pulse 
in the presence of large Doppler, so that ISI is present and it 
lowers the SIR. OFDM performs significantly worse than 
FMT with the r.r.c. pulse. In this case FMT exhibits 30 dB 
gain at 40.4 10Df T −= ×  over OFDM.  

C. Joint Time and Frequency Selective Fading Channel 
 The joint effect of the time and frequency channel 
selectivity is illustrated in Fig.3. A comparison among FMT 
with r.r.c. pulse and OFDM is done. The SIR is plotted as a 
function of the normalized delay spread γ  for several values 
of maximum Doppler  .Df T   It shows that the SIR for OFDM 
remains constant as the CP is longer than the channel. Further, 
FMT has superior SIR performance for 1.5γ <  as a result of 
being more robust to channel time variations. Then, the two 
systems have similar performance. For the parameters herein 
considered, the effect of the delay spread dominates for 

1.5,γ >  while for 1.5γ <  is the Doppler spread that lowers 
the SIR. 

V. CONSIDERATIONS ON THE PROTOTYPE PULSE DESIGN 
 The SIR results herein obtained can be used to guide the 
design of the prototype pulse and the choice of the system 
parameters. For a certain pulse, e.g., a root-raised cosine pulse, 
the formulas allow to determine the SIR as a function of the 
pulse duration, roll-off factor, number of tones, over sampling 
factor, and channel delay-Doppler spread. In particular, they 
allow to determine whether the ICI or the ISI dominates, and 
whether it is mostly caused by channel time variations or by 
frequency selectivity.  
 As an example, we report the ISI/S and ICI/S ratios as a 
function of the length (Fig. 4.A, Fig. 4.B), and of the roll-off 
factor (Fig. 4.C, Fig. 4.D), of a truncated r.r.c. prototype pulse 
considering several values of delay-Doppler spread. Fig. 4.A 
shows that the ISI/S rapidly reaches a floor that equals the 

1SIR−  obtainable with an infinite length pulse (see Fig. 3.A). 
Fig. 4.B shows that if we increase the filter length we obtain a 
better frequency confinement so that the ICI/S decreases. For a 
given filter length, a different choice of the roll-off factor 
translates into a tradeoff between the amount of ISI and ICI 
that the system exhibits, as shown in Fig. 4.C and 4.D. As we 
increase the roll-off, the excess bandwidth is increased, so that 
a higher overlapping of the sub-channel spectra is introduced, 
i.e., increased ICI. On the contrary, the impulse response has 
lower side lobes, so that we experience lower ISI.  
 The overall conclusion is that with a truncated r.r.c. pulse, 
the performance of FMT is bounded by the sub-channel ISI 
rather than by the ICI in time-frequency selective channels. 

VI. BIT-ERROR-RATE ANALYSIS 
 The SIR analysis of the previous section allows to predict 
the BER performance when single tap sub-channel 
equalization is used. That is, with the Gaussian approximation 
for the interference, and, for instance with 4-PSK modulation, 
the BER on sub-channel k can be approximated as follows [8] 

 
1

( )
( ) ( )

1 1 1 1 1 .
2 2 2

k
k kBER

SIR SNR

−
 = − + 
 

 (30) 

We report in Fig.5 a comparison  between the theoretical BER  
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Fig.4. ISI/S and ICI/S ratios as a function of the root-raised-cosine prototype 
filter length and roll-off in a joint time-frequency selective fading channel. 
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Fig.5. BER for several values of maximum Doppler and delay spread. FMT 

with root-raised-cosine pulse and OFDM with cyclic prefix. The systems have 
M=32 and N=40. Both theoretical and simulated curves are shown. 

 
(30), and the one that is obtained via Monte Carlo simulation.  
 We show the BER as a function of the signal-to-noise ratio 
for various values of normalized delay spread γ  (with the 
same channel profile of Section IV.A) and several values of 
normalized Doppler .Df T  We consider a 32 sub-channels 
FMT system with a r.r.c pulse with roll-off 0.2, and with 

40.N =  We consider OFDM with 32 tones and a CP of length 
8. 4-PSK modulation is used. The two systems have identical 
data rate and deploy a single tap equalizer. The figure shows 
that in OFDM the theoretical and simulated curves are very 
close, while for FMT the discrepancy is more pronounced. 
This is because in OFDM the Gaussian approximation is more 
accurate because a large number of intercarrier and 
intersymbol terms adds up to generate the interference.  
 As the SIR analysis has already shown, single tap 

equalization in FMT is sufficient for 1.5γ <  and smaller 
losses than in OFDM are experienced as the Doppler spread 
increases. For  1.5γ =  the performance of FMT is dominated 
by the channel frequency selectivity while OFDM by the time 
selectivity. For 1.5,γ >  high error floors are exhibited by both 
systems although are more pronounced in OFDM.   

VII. CONCLUSIONS 
We have presented an analysis of the effect of time and 

frequency selectivity in FMT modulation schemes. The results 
allow to characterize the effect of fading channels in these 
systems as a function of the Doppler-delay spread. The 
frequency confinement of the sub-channels makes the FMT 
scheme robust to the inter-carrier interference that can be 
generated by the channel time and frequency selectivity. Some 
ISI can arise but it can be handled with sub-channel 
equalization. In fast Rayleigh fading, FMT with a root-raised-
cosine prototype pulse and a simple one tap equalizer has 
superior SIR performance than OFDM. In frequency selective 
fading they have similar performance. 
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