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Abstract— In this paper, we study the effects of phase noise
in a multicarrier system. We show that the phase noise intro-
duces interference components, and we evaluate their second
order statistics. The analysis is then applied to two particular
multicarrier architectures: discrete multitone (DMT) modulation,
and filtered multitone (FMT) modulation. For the DMT case our
results are in agreement with other related work that considers
DMT only. For FMT modulation we demonstrate that the phase
noise power spectral density as well as the frequency response of
the prototype filters play a key role on the resulting interference
power value. Finally, we show that the analytical performance
results are close to the simulation results.

I. I NTRODUCTION

Multicarrier based transmission is an effective signaling
technique that allows to achieve high spectral efficiencies over
wideband channels with possibly lower complexity than single
carrier modulation. Discrete multitone (DMT) modulation, that
is usually referred to as orthogonal frequency division multi-
plexing (OFDM), has been deployed in many communication
systems, e.g. IEEE 802.11a/g, IEEE 802.16a, DVB-T, UMTS,
ADSL, and HomePlug. In this paper, we also consider another
multicarrier architecture that is known as filtered multitone
(FMT) modulation. FMT has been proposed for very high-
speed digital subscriber line (VDSL) [1] and its application to
wireless transmission is under investigation [2]-[7].

It has been shown that DMT is more sensible than single
carrier transmission to the phase noise that is introduced by the
oscillators in the receiver front-end [8]–[11]. This translates in
more stringent tuner requirements and consequently in higher
costs. Preliminary results have shown that also FMT is sensible
to the phase noise [5]. In this paper we carry out a detailed
analysis of the effects of phase noise in an FMT modulated
system.

After the system description of Sec.I, we describe in Sec.II
the various effects that the phase noise generates in a general
multicarrier system. We evaluate the power of the interfering
component in Sec.III. In Sec.V we particularize the analysis
to DMT and FMT considering the phase noise model that
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is described in Sec.IV. Simulation results and theoretical
performance bounds are compared in Sec.VI.

II. T RANSMISSIONSYSTEM DESCRIPTION

In Fig.1 we depict a general multicarrier system withM
subcarriers that assumes a discrete-time implementation [1][2].
The information data sequencesam(nT ),m = 0, 1, ...,M−1,
are up-sampled and shaped with a filter centered on a given
subcarrier. The resulting modulated signal is the sum ofM
contributions. We assume the data symbols to be independent
and identically distributed (i.i.d.) with zero-mean and power
Mam . The sub-channel shaping pulseh(t) is identical for
all sub-channels and is referred to as prototype filter. This
scheme collapses in a discrete multitone (DMT) or in a filtered
multitone (FMT) scheme depending on the choice ofh(t) and
of the up–sampling factorK. In particular, if h(t) has time-
limited rectangular impulse response andK = M , we obtain
the well known DMT (commonly named OFDM) solution.
Otherwise, ifh(t) is designed for obtaining an ideal frequency
separation between adjacent sub-channels, the modulator is
called FMT. We have a critically sampled (CS-FMT) or non–
critically sampled (NCS-FMT) solution ifK = M or K > M ,
respectively. The transmission bandwidthBs = 1/Tc = K/T
is then subdivided inM equally spaced subchannels with fre-
quency separation given byB = Bs/M . At the receiver side,
after down-conversion and analog-to-digital conversion, the
dual base-band operations are implemented using a prototype
filter g(t) matched withh(t). Both the DMT and the FMT
modulator/demodulator can be efficiently implemented via a
fast Fourier transform (FFT) [1].

In the following sections, we carry out an in-depth analysis
of the effects of phase noise into these modulation systems.
As shown in Fig.1, phase noise can be modelled as a mul-
tiplicative factor, exp{φ(t)}, that randomly varies the phase
of the received signal.φ(t) is a stationary random process
with zero mean and a given power spectral density (PSD). We
remark that usually the transmission chain includes the digital-
to-analog and the analog-to-digital converters whose effect is
to limit the bandwidth of the modulated signal and of the phase
noise PSD.
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Fig. 1. Multicarrier modulation/demodulation chain impaired by phase noise and frequency offset.

III. PHASE NOISE EFFECTS

In the sequel we analyze the effects of phase noise in
a general multicarrier system as described by Fig.1. In the
successive sections the effects will be particularized for the
DMT and the FMT solutions.

The modulated signals(kTc) can be written as1,

s(kTc) =
M−1∑

i=0

ej2πfikTc

+∞∑
n=−∞

ai(nT ) h(kTc − nT ) . (1)

Assuming transmission through an additive white Gaussian
noise (AWGN) channel, the received base-band signal is
corrupted by the additive thermal noisew(kTc) and distorted
by the time varying phase noiseφ(kTc)2:

r(kTc) = s(kTc) ejφ(kTc) + w(kTc) . (2)

The real and imaginary components of the i.i.d. AWGN
samples have varianceσ2

w = N0/2.
Focusing the analysis on thel-th subchannel,l =

0, 1, .., M − 1, the matched filter output sample reads

yl(nT ) =
+∞∑

k=−∞
r(kTc) e−j2πflkTcg(nT − kTc)

= al(nT ) zl,l(nT, nT ) +
+∞∑

p=−∞
p6=n

al(pT ) zl,l(pT, nT )

+
M−1∑

i=0
i6=l

+∞∑
p=−∞

ai(pT ) zi,l(pT, nT ) + w′(nT )

(3)

where we have defined

zi,l(pT, nT ) =
+∞∑

k=−∞
ejφ(kTc)ej2π(fi−fl)kTc

× h(kTc − pT ) g(nT − kTc) .
(4)

1Notation. Lower (capital) cases letters represent the signal in the time
(frequency) domain. The convolution operator is indicated as~. E[.] is the
expectation operator. rψ(t) and Rψ(f) are the autocorrelation and the PSD
of the random processψ, respectively. The Kroenecher operator isδ(·).

2We have assumed that the phase noiseφ(t) is constant over a period
Tc, this is a common approximation that holds true when the phase-noise
is slowly varying with respect toTc. In general ([12]), when an integrate-
and-dump filter is used at the receiver, the term exp{jφ(kTc} is replaced by
1

Tc

∫ kTc
(k−1)Tc

exp(jφ(t))dt.

The sequence of filtered noise samplesw′(nT ) is a stationary
Gaussian random process with zero mean, varianceσ2

w′ , and
PSDRw′(f) = N0 |G(f)|2.

Now, looking at (3) we find out that three different interfer-
ence contributions exist in the presence of phase noise. The
prototype filters play a key role for the characterization of
such interfering components. Therefore, different effects are
expected for DMT and FMT as we show in Section VI.

The first term in (3) contains the transmitted information
symbol, that is randomly rotated and attenuated by a common
phase error (CPE)zl,l(nT, nT ) [8], [10]. The second term
corresponds to the intersymbol interference (ISI) due to the
symbols transmitted on the same subchannel. Finally, the
last contribution is the interference generated by the symbols
transmitted over other subchannels. The carrier interference
(CI) can be separated in theIntra–CI due to the symbols
transmitted at the same time of the useful one, and in the
Inter–CI due to the symbols transmitted at other time instants.

IV. A NALYSIS OF THE INTERFERINGCOMPONENTS

In this section we report an analysis of the interfering
components, i.e. CPE, ISI, Intra/Inter-CI.

A. Evaluation of the Mean of the Interference Components

Assumingh(t) perfectly matched withg(t), it can be shown
that the ISI and the Intra/Inter–CI contributions have zero
mean. Instead, the mean of the CPE is given by

θ̄CPE,l = E[zl,l(nT, nT )]

= E[ejφ(kTc)]
+∞∑

k=−∞
h(kTc − nT ) g(nT − kTc) .

(5)

We observe that the CPE is subcarrier independent, i.e. all
transmitted symbols exhibit the same common phase error,
such thatθ̄CPE,l = θ̄CPE, l = 0, 1, ..., M − 1.

It is useful to define the common phase interference (CPI)
as the varying part of the CPE [8], i.e.̃zl,l(nT, nT ) =
zl,l(nT, nT )− θ̄CPE. CPI is a random variable with zero mean.

B. CPI, ISI and Intra/Inter–CI Power Evaluation

The statical power of the interfering components can be
evaluated exploiting the filter shape and the PSD of the phase
noise. The analysis in this section assumes no correction of
any phase errors, i.e. anon–coherent receiver.



Let us define the first factor that appears in the sum in (4) as

ϑi,l(kTc) = ejφ(kTc)ej2π(fi−fl)kTc

= θ(kTc) ej2π(fi−fl)kTc .
(6)

It is simple to show that its PSD is given by

Rϑi,l
(f) = Rθ(f − (fi − fl)) . (7)

Equation (4) can be rewritten as a 2-dimensional convolution
(the filters are real and even):

zi,l(t1,t2)=
∑

k

∑
p

si,l(kTc, pTc) q(t1 − kTc, t2 − pTc)

=si,l ~ q(t1, t2) , t1, t2 ∈ {...,−2T,−T, 0, T, 2T...}
(8)

where si,l(kTc, pTc) = ϑi,l(kTc)δ(pTc − kTc) is function of
the phase noise samples andq(t1, t2) = h(t1) g(t2) is the
impulse response of a 2-dimensional filter. Eq. (8) represents
a 2-dimensional up-sampling and filtering operation.

To proceed with the analysis, it is useful to compute the
bi-dimensional PSD of the non-stationary random process
zi,l(t1, t2) in (8). The computation yields

Rzi,l
(f1, f2) = Rϑi,l

(f1 + f2) |Q(f1, f2)|2 . (9)

We observe that the frequency response of the filterq(t1, t2)
is separable:Q(f1, f2) = H(f1) G(f2) . The statical power
of the interfering components can be calculated exploiting
(9) (see Appendix I). The Intra/Inter-CI has zero mean, and
its variance can be calculated as

σ2
CI,l =

M−1∑

i=0,i6=l

Mai

∫ +Bs/2

−Bs/2

Rϑi,l
(f) |G(f)|2 |H(0)|2 df ,

(10)
where Mai is the power of the information symbols
transmitted over thei-th subchannel. The power of the CPE
plus ISI becomes:

MCPE+ISI,l = Mal

∫ +Bs/2

−Bs/2

Rϑl,l
(f) |G(f)|2 |H(0)|2 df .

(11)
Remembering that the mean of this interference contribution
is θ̄CPE, the interfering variance can be calculated as:

σ2
CPI+ISI,l = MCPE+ISI,l −Mal

|θ̄CPE|2 . (12)

Finally, the average signal–to–noise plus interference ratio on
the l–th subcarrierSNIRl can be obtained as

SNIRl =
Mal

θ̄2
CPE

σ2
CI,l + σ2

CPI+ISI ,l + σ2
w′

. (13)

C. Including a frequency offset

The effects of a constant frequency offset can be easily
included in the proposed analysis. Let∆f the carrier fre-
quency offset (CFO) between the transmitted and the received
signal, Fig.1. The joint effects of CFO and phase noise can be
evaluated using: Rϑi,l

(f) = Rθ(f−(fi−fl +∆f)), instead of
(7). As shown in [4], CFO introduces both ISI and Intra/Inter–
CI into the modulated signal.
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Fig. 2. PSDs of the phase noise given in (14), witha = 6.5, b = 4, and
c = 10.5. The PSD1 has fφ1 = 10KHz and fφ2 = 20KHz, while for
PSD2, fφ1 = 10KHz andfφ2 = 100KHz

V. PHASE NOISE MODEL

In literature there are different proposed models for the
phase noise [8]–[12]. As an example we report a model of
phase noiseφ(t) with finite power described by the following
PSD function:

Rφ(f) = 10−cφ +

{
10−aφ , |f | ≤ fφ1

10
−(|f |−fφ1 )

bφ
fφ2

−fφ1
−aφ

, |f | > fφ1

(14)
The coefficientcφ determines the noise floor,bφ the steepness
of the slope,aφ andfφ1 establish the white phase noise region
and fφ2 is the frequency where the noise-floor is dominant
[10]. In Fig. 2 the PSD is reported for two different values of
fφ1 andfφ2 .

If we assume the standard deviation of the phase noise small
enough, i.e.σφ << 1, the termθ(t) in (6) can be rewritten
using a series expansion:

θ(t) = ejφ(t) ' 1 + jφ(t)− φ(t)2/2 . (15)

In this case, the PSD ofθ(t) is well approximated by:

Rθ(f) = δ(f) + Rφ(f) . (16)

VI. PHASE NOISE EFFECTS INDMT AND FMT SYSTEMS:
L IMITS FOR A NON–COHERENTRECEIVER

In the DMT system the modulator and demodulator con-
stituent filters have time–limited impulse responses given by

h(kTc) = g(kTc) =
{

1, if 0 ≤ k ≤ M − 1
0, otherwise

. (17)

In a FMT system the prototype filter has a frequency-limited
shape. Ideally the filters have rectangular frequency response:

H(f) =
{

1, if |f | ≤ 1/2T = Bs/2K = B/2
0, otherwise

. (18)

At the receiver sideg(t) is matched withh(t), g(t) = h∗(−t).
Firstly, sinceφ(t) is a zero mean random variable, the mean

of the CPE (5) is̄θCPE = 1−Pφ/2, where (15) has been used
and Pφ = σ2

φ. The θ̄CPE is equal in both DMT and FMT
systems.



A. DMT

In the DMT system, the ISI and Inter–CI components
disappear (Eq. (8), and [11]). The power of the CPE plus
Intra-CI becomes:

MCPE+Intra-CI,l =
M−1∑

i=0

Mai

∫ +Bs/2

−Bs/2

Rϑi,l
(f) sinc2(fT ) df .

(19)
This result is in agreement with [10]. In [8] it has been shown
that if |φ(t)| ¿ 1, than the total power of the interfering
signals is only function ofPφ, i.e. σ2

Inttra-CI+CPI,l|DMT
= MaPφ,

with Mai
= Ma, ∀i. However, we remark that the individual

contributions of CPI and Intra-CI are a function of the phase
noise PSD shape.

B. CS/NCS–FMT

In an FMT based system the evaluation of the effects of the
phase noise can be effectively evaluated with the proposed
method. Using the ideal filter in (18), the power of the CPE
plus ISI is

MCPE+ISI,l = Mal

∫ +B/2

−B/2

Rϑl,l
(f) df . (20)

We conclude that the auto–interference on subcarrierl is a
function of the phase noise shape. In particular it depends
on the amount of phase noise power that falls in thel-th
sub-channel. Moreover, we observe that NCS–FMT is less
sensible than CS–FMT, this is because the prototype filter
bandwidth in NCS–FMT is smaller than in CS–FMT, i.e.
Bs/K < Bs/M (Bs is fixed) [1][3][4]. Similar observations
are possible for the Intra/Inter–CI power evaluation (see (10)).
However for a CS-FMT modulator, whenMai = Ma, ∀i, the
global interfering contribution has power:

σ2
CPI+ISI+CI,l|CS-FMT

= MaP ′φ , (21)

whereP ′φ is the amount of phase noise power that falls in the
signal bandwidthBs. In general this inequality holds:

σ2
CPI+ISI+CI,l|NCS-FMT

≤ σ2
CPI+ISI+CI,l|CS-FMT

. (22)

Briefly, for a fixed signal bandwidthBs the sensitivity to
the phase noise can change as function of the FMT parameters
as follows (under the assumption of an ideal prototype filter):

(i) In CS-FMT, the global power of the interference doesn’t
depend on the number of subcarriersM , but only by the
phase noise power that falls in the bandwidthBs.

(ii) In NCS-FMT, performance is function of the up–
sampling factorK. The performance degradation de-
creases ifK increases (but the spectral efficiency is also
reduced). FixingK, the system is more sensitive to the
phase noise for a lower number of subcarriers. The phase
noise spectra shape plays a key role.

(iii) Fixing the power of the phase noise that falls inBs, the
PSD Rφ(f) determines the distribution of the interference
power between the CPI plus ISI and the Intra/Inter–CI.

The prototype filter shape influences the phase noise effects.
Usually, the filters are designed to achieve robustness to ISI
and Intra–CI [2]. Note that the analysis in Sec.IV includes

56 58 60 62 64 66 68 70 72
−55

−50

−45

−40

−35

−30

−25

−20

−15

Subcarrier index (l)

P
ow

er
 o

f t
he

 in
te

rf
er

en
ce

 o
n 

su
bc

ar
rie

r 
l=

64

DMT
CS−FMT
NCS−FMT
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the effects of residual interference due to a non–ideal shape
of the prototype filter. We show in Fig.3 the power of the
interference on a particular subchannel for DMT, CS-FMT,
and NCS-FMT. The FMT systems use an ideal rectangular in
frequency prototype pulse. We note that in the FMT systems
the Intra/Inter–CI is negligible with respect to the CPI and ISI
components. Moreover, we observe that in a DMT system,
the Inter–CI is evident. We remark that we have evaluated
the interference power for each subchannel right after the
matched filter-bank. Usually, in a FMT modulated system,
equalization is necessary with the purpose of reducing the ISI
caused by the prototype filter and multipath radio channel [1],
[7]. However, in the simulation results of the next section,
performance is evaluated considering also equalization.

VII. S IMULATION RESULTS

We consider DMT and FMT modulated systems withM =
128 subcarriers over a frequency band ofBs = 25MHz.
The FMT prototype filterh(t) that we choose, has temporal
extensiont ∈ {0, Tc, ..., (γ − 1)Tc}, with γ = 12. In the
NCS–FMT scheme the prototype filter approximates a square–
root raised cosine pulse with a roll–offρ = 0.125. The
up–sampling factor isK = (1 + ρ)M = 144. For the
correction of the residual ISI due to the FMT prototype filter
we use a per-subcarrier fractionally–spaced (T/2) decision
feedback equalizer (FS–DFE) with 12 coefficients for both
the feedforward and the feedback filters.

In Fig.4 the bit error rate (BER) versus the signal–to–noise
ratio SNR (defined asSNR = E[|s(kTc)|2]/(N0Bs/M))
is shown for both DMT and NCS-FMT in the presence of
phase noise over an AWGN channel. Both QPSK and 16-
QAM mapping are considered for the two phase noise PSDs
of Fig.2. The figures show that the performance degradation
increases with the modulation order in both DMT and FMT.

Moreover, we report also the theoretical performance that is
computed by using theSNIR defined in (13). The theoretical
bounds are close to the simulated performance. We emphasize
that in NCS-FMT with the employed prototype filter and
with the considered phase noise PSDs, the Intra/Inter-CI is
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negligible with respect to the CPE and ISI contributions.
Besides CPE, phase noise introduces a random component
in the ISI which cannot be corrected by the equalizer (see
(3)). This explains why the theoretical BER bounds that do
not consider equalization practically match with the simulated
equalizer performance. In this scenario, even tighter bounds
could be obtained by extending to this context the method
used for single–carrier modulation.

VIII. C ONCLUSION

The effects of the phase noise in FMT modulated systems
have been analyzed and compared to the DMT solution.
Generally, phase noise introduces various interference com-
ponents, i.e. common phase error, ISI and Intra/Inter-CI. The
power of the interfering components has been evaluated, and
its dependence on the phase noise spectra as well as the
prototype filter shape has been demonstrated. The validity
of the analytical results is confirmed by simulation results.
Although Intra/Inter-CI is usually negligible for the commonly
considered phase noise spectra, common phase error and ISI
impact the FMT performance. Fast variations of the phase
noise with respect to the length of the prototype filter increase
the FMT bit/symbol error rate.

APPENDIX I
CPE, ISIAND INTRA/INTER–CI POWER EVALUATION

Let fi,l(nT ) be the generic term that appears in (3)

fi,l(nT ) =
+∞∑

p=−∞
al(pT ) zi,l(pT, nT ) .

ai(t) is a sequence of i.i.d. symbols, independent fromϑ(t).
Then, the autocorrelation function offi,l(t) reads:

rfi,l
(τ) =E

[
fi,l(nT + τ) f∗i,l(nT )

]

=Mai

+∞∑
p=−∞

E
[
zi,l(pT, nT + τ) z∗i,l(pT, nT )

]

=Mai

+∞∑
p=−∞

rzi,l
(pT, τ) = Mai R

′
z(f1 = 0, τ) ,

where the PSD R
′
z(f1, τ), τ ∈ {−∞, ...,−1, 0, 1, ..., +∞} is

given by the Fourier transform of the correlation rz(t1, τ)
respect tot1. Exploiting the PSD proprieties, the statistical
power offi,l(nT ) is given by:

Mfi,l
= Mai R

′
zi,l

(f1 = 0, τ = 0) = Mai

∫ +∞

−∞
Rzi,l

(0, f2) df2

(23)
The argument of the integral in (23) reads Rzi,l

(f1 = 0, f2) =
Rϑi,l

(f2) |Gl(f2)|2 |Hi(0)|2. Thus we obtain (10).
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