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Abstract—This paper deals with the orthogonal design of a
cyclic block filtered multitone modulation (CB-FMT) system. CB-
FMT is a filter bank modulation scheme that uses well frequency
localized pulses as in FMT but the linear convolutions are
replaced by circular convolutions. We derive the orthogonality
conditions both in the time domain and in the frequency domain.
Then, we show that such conditions can be fulfilled with a
hyper-spherical parameterization of the pulse frequency com-
ponents. Finally, optimal frequency localized orthogonal pulses
are searched. It is shown that much higher in-band-to-out-of-
band sub-channel energy is achieved for both critically sampled
and non-critically sampled architectures compared to baseline
solutions corresponding to either the use of a rectangular or
a root-raised-cosine window in frequency. Finally, a comparison
with OFDM shows that higher spectral efficiency can be provided
by orthogonal CB-FMT.

I. INTRODUCTION

The demand for high data-rate communication systems has

motivated the use of a wide spectrum and the study of new

spectral efficient transmission technologies. Since wide band

channels can introduce severe inter-symbol interference in

single carrier digital modulation systems, multicarrier mod-

ulation has been advocated as a better option to simplify

the equalization task and possibly to yield higher data rates

[1]. The most popular multi-carrier modulation scheme is

Orthogonal Frequency Division Multiplexing (OFDM) [2].

This scheme has been adopted in several communication

standards, for both wireless and wired applications, e.g., in

the WLAN IEEE 802.11 [3] and in the cellular LTE standard

[4]. Despite its simplicity, which translates in a straightforward

discrete Fourier transform (DFT) realization, OFDM exhibits

poor sub-channel frequency confinement which jeopardizes its

robustness in the presence of non-idealities, as synchronization

errors [5], insufficient length cyclic prefix (in frequency se-

lective channels), high mobility (channel time variations) [6].

Furthermore, it as it exhibits poor peak-to-average power ratio

characteristics [7] and improvable spectrum agility in cognitive

radio applications or when Electromagnetic Compatibility

(EMC) notching masks are imposed for coexistence with

others systems. This has pushed the research on alternative

filter bank modulation (FBM) schemes.

A FBM system uses a synthesis filter bank for transmission

with possibly well frequency localized sub-channels. In par-

ticular, in Filtered Multitone (FMT) modulation a prototype

pulse is used and the frequency translation is obtained via the

modulation with an exponential function [8].

Another FBM scheme, where the pulse design has been

analyzed, is OFDM/OQAM [9].

In this paper, we consider a FBM scheme that we refer to

as Cyclic Block Filtered Multitone Modulation [10]. Similarly

to FMT well localized sub-channels are used, but the linear

convolutions are replaced with cyclic convolutions. We have

shown that CB-FMT can be implemented in the frequency do-

main with a significant lower complexity than FMT with even

longer pulses [11], [12]. Furthermore, it has the potentiality

of yielding lower bit error rate in fading channels than OFDM

and FMT thanks to the ability of exploiting frequency diversity

through frequency domain equalization [10]. It can also be

shown that lower peak-to-average-power ratios are obtained

compared to OFDM [12].

In this paper, we focus on the orthogonal design of CB-

FMT. Thanks to its cyclic convolution structure, the or-

thogonal pulse design is simplified compared to FMT [13],

[14]. In particular, we show that both real and Hermitian

complex pulses can be designed with maximum sub-channel

frequency confinement. A comparison with baseline solutions

corresponding to either the use of a rectangular or a root-

raised-cosine window in frequency shows that improved in-

band-to-out-of-band sub-channel energy is achieved for both

critically sampled and non-critically sampled architectures.

This can yield improved robustness of the system to channel

and hardware non-idealities.

This paper is organized as follows. In Section II, we

overview the CB-FMT modulation principles. In Section III,

we derive the orthogonality conditions for CB-FMT in the time

and the frequency domains. In Section IV, we focus on the

filter bank design procedure. In Section V, we provide several

design examples and we show the improvement w.r.t. baseline

solutions. Finally, in Section VI, the conclusions follow.

II. CYCLIC BLOCK FMT MODULATION

Cyclic Block FMT (CB-FMT) is a filter bank modulation

scheme that is depicted in Fig. 1. As such, the high data-rate

information signal to be transmitted is split into K low data-

rate signals, denoted with a(k)(ℓN) with k ∈ {0, · · · ,K−1}.
Consequently, the wide band channel is partitioned in K
narrow sub-channels. The transmission takes place simultane-

ously modulating the low data-rate signals. To avoid interfer-

ence between the sub-channels and to reduce the emissions

outside the useful band, sub-channel frequency selectivity

is desirable. To achieve this, the low data-rate signals are
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Fig. 1. Block diagram of the CB-FMT transceiver.

shaped with a frequency confined pulse. Differently from

conventional filter bank modulation as FMT, the sequence of

data symbols in each sub-channel is grouped into blocks of

L elements. Each block is interpolated by a factor N and,

then, cyclically convolved with the prototype pulse g(n). The
K modulated signals are translated in the frequency domain

by an exponential function multiplication. Finally, the sub-

channel signals are summed together to yield the transmitted

signal x(n). In simple formulae, this signal can be written as

follows

x(n) =
K−1
∑

k=0

[

a(k) ⊗ g
]

(n)

=
K−1
∑

k=0

L−1
∑

ℓ=0

a(k)(ℓN)g((n− ℓN)M)W−nk
K , (1)

n ∈ {0, · · · ,M − 1},

where ⊗ denotes the circular convolution operator, g(n) is

the prototype pulse, W−nk
K = ei2πnk/K is the complex

exponential function and (·)M = mod(·,M) is the integer

modulo operator. Differently from the linear convolution, the

cyclic convolution involves periodic signals and it is performed

in a period of length M = LN samples. The prototype pulse

g(n) is a causal finite impulse response (FIR) filter of M
coefficients. Without loss of generality, if the filter length is

less than M , the pulse can be extended to M coefficients with

zero-padding. In (1), g((n−ℓN)M) denotes the prototype pulse
periodic repetition, i.e. g((n− ℓN + kM)M) = g(n− ℓN).
At the receiver, we apply a cyclic analysis filter bank to the

received signal y(n) using the prototype analysis pulse h(n).
The n-th sample associated to the k-th sub-channel can be

written as

z(k)(nN) =

M−1
∑

ℓ=0

y(ℓ)W ℓk
K h((nN − ℓ)M), (2)

k ∈ {0, . . . ,K − 1}, n ∈ {0, . . . , L− 1},

where h((nN−ℓ)M) is the periodic repetition of the prototype

analysis pulse.

The system processes the information data organized in K
blocks of L symbols each, i.e. KL data symbols at once. The

transmitted signal, derived from (1), has a duration equal to

MT seconds, where T denotes the sampling period. Therefore,

the transmission data rate is equal to

R =
KL

MT
=

K

NT
symbols/s. (3)

CB-FMT, similarly to conventional FMT, employs fre-

quency confined pulses. However, as explained above, the

linear convolutions in FMT are replaced by cyclic convolu-

tions. It has been shown that this yields lower implementation

complexity yet using pulses with equal or higher length and

using an efficient frequency domain realization [12]. In this

paper, we focus on the design of an orthogonal CB-FMT

system. In the next section we discuss the orthogonality

conditions.

III. ORTHOGONALITY CONDITIONS IN CB-FMT

The CB-FMT system has perfect reconstruction (PR) when

neither inter-symbol interference (ISI) nor inter-carrier inter-

ference (ICI) is present at the output of the analysis cyclic

filter bank (assuming an ideal communication medium). To

derive the PR conditions we have to combine (1) with (2). In

particular, we can rearrange them to obtain

x(n) =

K−1
∑

k=0

L−1
∑

ℓ=0

ã(k)(ℓN)g(k)(n− ℓN), (4)

z̃(h)(mN) =

M−1
∑

n=0

x(n)h(h)(mN − n), (5)

where

ã(k)(ℓN) =a(k)(ℓN)W−ℓNk
K , (6)

z̃(h)(mN) =z(h)(mN)WmNh
K , (7)

g(k)(n) =g ((n)M )W−nk
K , (8)

h(h)(n) =h ((n)M)W−nh
K . (9)

To have the circular convolution in (4) and (5), the pulses in

(8) and (9) must be periodic with periodM , i.e. g(k)(n+M) =
g(k)(n). This condition is valid when Q = M/K is an integer

number.

Now, we replace (4) into (5). After some algebraic manip-

ulations, we obtain the following input/output relation

z̃(h)(mN) =

K−1
∑

k=0

L−1
∑

ℓ=0

ã(k)(ℓN)g(k)⊗h(h)(mN − ℓN). (10)

To proceed, we assume to have synthesis and analysis

matched filters, i.e. h(n) = g∗−(n) = g∗(−n), where (·)∗
denotes the complex conjugate operator, so that the signal-

to-noise ratio (SNR), in the presence of background noise, is

maximized. The relation (10) becomes

z̃(h)(mN) =

K−1
∑

k=0

L−1
∑

ℓ=0

ã(k)(ℓN)r(k,h)(mN − ℓN), (11)

r(k,h)(mN) =g(k) ⊗
(

g
(h)
−

)∗

(mN), (12)

where (12) represents the cyclic correlation between g(k)(n)
and g(h)(n), sampled by a factor N .

To have orthogonality, the following two conditions must

be fulfilled:

1) for k = h, r(k,k)(mN) = δm, where δm is the

Kronecker delta so that no ISI is present at the output;



2) for k 6= h, r(k,h)(mN) must be always null, so that no

inter-carrier (ICI) is present.

The above conditions essentially are an extension of the

bi-dimensional Nyquist criterion to cyclic filter banks.

As it will be clear in Section IV, the orthogonal design

of CB-FMT will be carried out in the frequency domain.

Therefore, it is important to write the orthogonality conditions

in the frequency domain. We start from (12) and we compute

the M -point DFT to obtain

R(k,h)(q) =

L−1
∑

n=0

r(k,h)(nN)Wnq
L

=

M−1
∑

m=0

r(k,h)(m)δN (m)Wmq
M , (13)

where δN (m) denotes the Kronecker delta periodically re-

peated with period N , i.e. δN (m) =
∑

p∈Z
δm,pN , equal

to 1 for m ∈ {pN, p ∈ Z} and 0 otherwise. The periodic

delta function can be rewritten as δN (m) =
∑N−1

s=0 Wms
N /N .

Substituting it in (13), we obtain

R(k,h)(q) =
1

N

N−1
∑

s=0

M−1
∑

m=0

r(k,h)(m)Wmq
M WmsL

M

=
1

N

N−1
∑

s=0

R
(k,h)
1 (q + sL), (14)

where R
(k,h)
1 (q) is the M -point DFT of (12) before the N

factor decimation. R
(k,h)
1 (q) is equal to

R
(k,h)
1 (q) = G(q + kQ)G∗(q + hQ), (15)

where G(q) is M -point DFT of the prototype pulse g((n)M ).
Finally, substituting (15) in (14), we obtain

R(k,h)(q) =
1

N

N−1
∑

s=0

G(q+ sL+kQ)G∗(q+ sL+hQ). (16)

Finally, the orthogonality conditions can be now translated

in frequency domain as follows:

1) for k = h, the cyclic auto-correlation of the prototype

pulse must have a flat spectrum, i.e., its DFT coefficients

must be equal to a constant. Analytically, the condition

is expressed as

R(k,k)(q) =
1

N

N−1
∑

s=0

|G(q + sL+ kQ)|2 = 1, (17)

∀q ∈ {0, . . . , L− 1}, ∀k ∈ {0, . . . ,K − 1}.
2) for k 6= h, the time domain cross-correlation function

r(k,h)(nN) must be null. Therefore, its DFT coefficients

must also be null. Analytically, we have

1

N

N−1
∑

s=0

G(q + sL+ kQ)G∗(q + sL+ hQ) = 0, (18)

∀q ∈ {0, . . . , L− 1}, ∀k ∈ {0, . . . ,K − 1}.
In the following section, we will discuss the design of

optimal orthogonal pulses.

IV. ORTHOGONAL PULSE DESIGN

To design an orthogonal CB-FMT system, we need to

determine G(i), i ∈ {0, . . . ,M − 1}, such that equations

(17) and (18) are satisfied. The problem is non-linear and

involves M variables and KL equations. We start from the

condition (17). The square sum of a number of variables is

equal to a constant if the variables are expressed in term

of trigonometric functions. For example, a valid solution of

equation x2 + y2 = 1 in R
2 is given by x = cosα, y = sinα.

In other words, polar coordinates solve (17) for N = 2,
independently of the angle α. This procedure can be extended

for N = 3 using spherical coordinates, and more generally,

for N > 3, we can use the hyper-spherical coordinates in

the R
n space [15]. To simplify the notation, we consider

k = 0. So that the solution to (17) can be obtained, for

q ∈ {0, . . . , L− 1}, as follows

G(q) =
√
N cos θq,0, (19)

G(q + L) =
√
N sin θq,0 cos θq,1, (20)

... =
...

G(q + sL)
s∈{2,...,N−2}

=
√
N

(

s−1
∏

i=0

sin θq,i

)

cos θq,s, (21)

... =
...

G(q + (N − 1)L) =
√
N

(

N−2
∏

i=0

sin θq,i

)

. (22)

It should be noted that the DFT coefficients {G(q), G(q +
L), . . . , G(q+(N−1)L)} are obtained from a set of N−1 an-

gles, denoted as θq = {θq,0, θq,1, . . . , θq,N−2}. Thus, exploit-
ing the angle representation, the L equations in N unknowns

(17) can be rewritten as a system of L equations and N − 1
unknown angles. If we consider a prototype pulse that is band

limited, i.e. the non-zero DFT coefficients are Q2 < M , the

number of unknown angles is reduced. Exploiting the angles

representation, these L equations are automatically verified

and do not need to be solved.

To complete the orthogonal design, we need to satisfy the

no-ICI condition (18). This condition is given by a non-

linear system of (K − 1)L equations in L sets of unknown

angles. To simplify the problem, the system of equations

can be partitioned in disjointed sub-systems. The number of

sub-systems is equal to Ns = gcd(Q,L), where gcd(Q,L)
denotes the greatest common divisor between Q = M/K and

L = M/N . Each sub-system involves Na = L/Ns sets of

angles and (K − 1)L/Ns equations. The n-th sub-system is

represented as follows























R(0,1)((n+ bNs)L) = 0 (θ(n)L ,θ(n+Ns)L)

R(0,2)((n+ bNs)L) = 0 (θ(n+bNs)L ,θ(n+(b+2)Ns)L)
..
.

..

.

R(0,K−1)((n+ bNs)L) = 0 (θ(n+bNs)L ,θ(n+(b+K−1)Ns)L)
(23)
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Fig. 2. Baseline prototype pulse examples for K = 12, N = 12,M = 240

and K = 12, N = 16,M = 240, β = 0.33. On the left, the impulse
response of the base-band pulse version. On the right, frequency response
(DFT coefficients).

where b ∈ {0, . . . , Na − 1} and the pair (θa, θb) denotes

the set of angles involved in the orthogonal condition. In

the n-th sub-system of (23), there are Na equations for each

sub-channel, i.e. the R(0,k)((n+ bNs)L) notation gathers the

equations R(0,k)((n)L), R
(0,k)((n + Ns)L), . . . , R

(0,k)((n +
(Na − 1)Ns)L).
We note that the problem can be partitioned in sub-systems

only if Q and L are not coprime. For example, with the pa-

rameters K = 8, N = 10,M = 240, we have 6 sub-systems.

Each sub-system has 4 sets of angles (36 unknowns) and 28
equations. The maximum sub-system number is reached when

K = N . In this case, we have a sub-system for each set of

angles, i.e., we have L sub-systems of N − 1 equations in

N − 1 unknowns.

A. Complex Solutions

Solving the system(s) in (23) as a function of angles

yields real solutions, i.e., the prototype pulse M -point DFT is

real. More generally, these coefficients can be complex. This

suggests to modify the relations (19)-(22) to take into account

the DFT coefficient phase. We, therefore, have

Gc(q) =G(q)eiφq,0 , (24)

Gc(q + L) =G(q + L)eiφq,1 , (25)

... =
...

Gc(q + sL) =G(q + sL)eiφq,s , (26)

... =
...

Gc(q + (N − 1)L) =G(q + (N − 1)L)eiφq,N−1 , (27)

where φq = {φq,0, . . . , φq,N−1} are the sets of phases. Also in

the complex case, the partitioning into sub-systems is possible

as mentioned in Section IV. The only difference is the number

of unknowns that grows from (N − 1)L to (2N − 1)L.
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Fig. 3. Discrete impulse response of optimal prototype pulses for K =

12, N = 16. On the top, the real DFT coefficient pulse (Hermitian symmetry).
On the bottom, the complex DFT coefficient pulse (asymmetric).

B. Optimal Pulse Design

In this section, we consider the pulse design under the

objective of maximizing the in-band-to-out-of-band pulse en-

ergy. This yields optimally frequency localized sub-channel

pulses. The transmitted signal x(n) is interpolated with an

interpolation low pass filter. The objective function is defined

as

fm(θ,φ) =

∫ B

0 |Gi(f, θ,φ)|2 df
∫ +∞

−∞
|Gi(f, θ,φ)|2 df −

∫ B

0
|Gi(f, θ,φ)|2 df

,

(28)

θ ={θ0, . . . , θL−1},
φ ={φ0, . . . ,φL−1},

whereGi(f, θ,φ) is the frequency response of the interpolated
prototype pulse and B = 1/KT is the sub-channel bandwidth.

In the following numerical analysis, x(n) is interpolated from

the Z(T ) discrete time domain to the Z(T/Ni) domain.

It should be noted that if the prototype pulse has only Q
non-zero DFT coefficients, i.e. G(i) = 0 for i ∈ {Q, . . . ,M−
1}, the condition in (18) is always satisfied. A trivial or-

thogonal solution is to set such coefficients all equal to

one. However, such a solution does not grant the maximum

frequency confinement when the interpolation is taken into

account. It is interesting to note that in such a case the CB-

FMT system is exactly the dual of OFDM, i.e., OFDM uses

a rectangular (rect) time domain window while CB-FMT uses

a rectangular frequency domain window. Another possibility

is to still assume only Q non zero DFT coefficients but a

root-raised-cosine (rrc) window. The maximum roll-off is then

chosen equal to βMAX = Q/L− 1.

In the following section, we show that better than the

rectangular and the rrc frequency confined pulses can be

designed.
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cients. In this plot, the frequency is normalized to the sub-channel spacing,
i.e. 1/KT = 1.

V. NUMERICAL RESULTS

We have performed a search for optimally frequency local-

ized pulses. In particular, we consider the maximization of the

objective function in (28) under the constraints in (18) with

the angular parameters as in (23). The pulse is upsampled by

a factor 8 and then filtered (with a linear convolution) with a

10-th order raised cosine filter. The optimization is performed

exploiting the interior point method [16]–[18]. To avoid the

local maximum problem, we repeat the optimization several

times (starting from different and randomly initial points) and

we select the pulse that offers the highest metric value.

We report results assuming a pulse length equal toM = 240
and different K,N combinations. The optimization is per-

formed for two classes of pulses. The former class comprises

pulses that have Hermitian symmetry so that the DFT coeffi-

cients are real (see (19)-(22)). These pulses can have real or

complex impulse response depending on the spectrum sym-

metry. The latter class of pulses includes asymmetric pulses

that have complex and asymmetric impulse and frequency

TABLE I
IN-BAND TO OUT-BAND RATIOS FOR BASELINE AND OPTIMAL PULSES.

System Params. Metric value (dB)

K N Rate Baseline Base Hermitian Asym.

12

12 1.00 Rect 15.76 - 17.94
16 0.75 RRC, β = 0.34 49.59 58.21 69.86
20 0.60 RRC, β = 0.67 46.81 70.09 70.05
24 0.5 RRC, β = 1.00 46.34 70.48 70.32

20

20 1.00 Rect 13.95 - 15.59
24 0.83 RRC, β = 0.20 28.01 38.11 45.92
30 0.67 RRC, β = 0.50 36.36 55.41 68.31
40 0.5 RRC, β = 1.00 39.54 67.53 68.84

24

24 1.00 Rect 13.16 - 14.68
30 0.80 RRC, β = 0.25 27.41 37.22 43.09
40 0.60 RRC, β = 0.67 31.55 64.91 66.59
48 0.50 RRC, β = 1.00 36.91 66.12 68.19
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Fig. 5. Frequency response of the interpolated prototype pulses for K =

12, N = 16 (rate 0.75). On the left, the baseline pulse: a root-raised cosine
with β = 0.33. In the middle, the optimal prototype pulse with real DFT
coefficients. On the right, the optimal prototype pulse with complex DFT
coefficients. In this plot, the frequency is normalized to the sub-channel
spacing, i.e. 1/KT = 1.

response.

As baseline pulses, we consider the rect and the rrc (in the

frequency domain) pulses an example of which is shown in

Fig. 2. In the special case K = N , the baseline prototype

pulse is rectangular, i.e. G(i) = 1 for i ∈ {0, . . . , Q− 1} and

zero otherwise.

In Tab. I, we report the in-band-to-out-of-band energy ratio

for K = 12, 20, 24 and different N values. For K = N ,

the system exhibits the maximum transmission rate, equal to

R = 1/T symbols/s. In this case, the only Hermitian pulse is

the baseline rectangular pulse. However, an asymmetric pulse

(complex) exists and it increases the metric value by 1.5 dB.

For K < N , the rate reduction allows the design of pulses

that improve considerably the metric. We note that when the

rate decrease, Hermitian and asymmetric pulses exhibit similar

metric improvement.

In Fig. 3, we show an optimal prototype pulse example

for K = 12 and N = 16 in discrete time. The pulses have

complex impulse response.

In Fig. 4 and Fig. 5, we show the frequency response of

the interpolated prototype pulses. In Fig. 4, we show the

frequency response for K = 12, N = 12. For the baseline

rectangular pulse, the frequency response decreases from −20
dB to −63 dB. For the optimal real DFT coefficients pulse,

the frequency response is always below −40 dB and decreases

to −60 dB. In Fig. 5, we show the frequency response for

K = 12, N = 16. For the baseline pulse, the frequency

response decreases from −30 dB to −58 dB. For the optimal

real DFT coefficients pulse, the frequency response is always

below −60 dB and decreases to −80 dB. For the optimal

complex DFT coefficients pulse, the frequency response is

always below −70 dB and it decreases to −100 dB showing

a significant spectrum confinement.
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Fig. 6. Average maximum achievable rate for CB-FMT and OFDM as a
function of the cyclic prefix length (in samples). For CB-FMT, the system
parameters are K = 24, N = 24,M = 240. For OFDM, the sub-channel
number is equal to K = 32. Both systems exploit a 1-tap equalizer.

An example of achievable performance is reported in Fig.

6. We consider both CB-FMT and OFDM. They both employ

a cyclic prefix (CP) to cope with the channel dispersion

and allow frequency domain equalization. For both systems,

we use a 1-tap equalizer [12]. In particular, we show the

average maximum achievable rate as a function of the CP

length. For CB-FMT, we choose K = 24, N = 24 and

the optimal pulse with length equal to M = 240 (critically

sampled system). For OFDM, the number of sub-channels is

equal to K = 32. The achievable rate is evaluated for an

SNR equal to 15 and 30 dB. The achievable rate is averaged

over different channel realizations (drawn randomly from a

typical frequency selective Rayleigh fading channel model

with exponential power delay profile, with delay spread equal

to 0.15µs and bandwidth 1/T = 20 MHz). The figure shows

that CB-FMT offers higher achievable rate than OFDM. An

optimal value of CP (shorter than the channel length) can be

determined in both systems [19]. It should be noted that the

rate decrease for CP lengths longer than the optimal value is

lower for CB-FMT than for OFDM. Furthermore, CB-FMT

offers much higher rate also in the absence of CP. The higher

rate offered by CB-FMT than OFDM can be explained by its

ability to better exploit the channel frequency diversity through

FD equalization and the higher robustness to ICI and ISI due

to the higher sub-channel frequency confinement with short

duration pulses [10].

VI. CONCLUSIONS

In this paper we have investigated the optimal orthogonal

design of a cyclic block FMT system. CB-FMT is a filter bank

modulation scheme where linear convolutions are replaced

by circular convolutions. We have shown that the orthogonal

conditions can be written in the frequency domain allowing to

derive simple hyper-spherical constraints for the pulse search.

Furthermore, both real and complex impulse response pulses

can be obtained with the objective of maximizing the in-band-

to-out-of-band energy for maximum frequency confinement.

Interestingly, a better than the trivial rectangular frequency

domain window has been found which provides no rate loss,

and about 1.5 dB gain in spectrum confinement. For lower

spectral efficiency (rate below 1), both real and Hermitian

impulse response pulses provide over 20 dB gain compared

to rrc pulses.
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