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ABSTRACT 
In this paper we analyze the performance of Filtered Multitone (FMT) 

modulation systems in satellite channels. FMT is a generalized OFDM scheme 
that deploys sub-channel shaping filters. It is a spectral efficient scheme that 
can support orthogonal multiuser transmission. Herein, we carry out a de-
tailed analysis to understand whether it yields increased robustness, compared 
to OFDM, in typical LEO satellite channels. We consider an asynchronous 
multiuser scenario that introduces carrier frequency offsets, time offsets, and 
time/frequency channel selectivity. The analysis that we present in this paper 
allows to benchmark the multitone system and understand how robust it is to 
frequency selective time-variant fading and carrier Doppler shifts. Quasi-
closed form expressions in the case of rectangular frequency domain pulses 
and raised cosine pulses are derived for the signal-to-interference power ratio 
at the receiver. It is found that the sub-channel spectral containment of the 
FMT system can yield increased performance compared to OFDM. 

1. INTRODUCTION 

 In this paper we analyze the performance of multicarrier modulation [1] 
based architectures in satellite time-frequency selective channels. We consider 
low earth orbit (LEO) channels where the satellite elevation angle seen by a 
given user changes continuously. This, together with the terminal movement, 
introduces channel time variations. The satellite movement also induces high 
carrier Doppler shifts [2], [3]. Furthermore, multipath propagation, and thus 
frequency selective fading, can be present in urban areas. Multicarrier modula-
tion and in particular orthogonal frequency division multiplexing (OFDM) has 
been proposed as an attractive modulation technique for LEO satellite com-
munications [2]. In this paper, we investigate the performance of a more gen-
eral multicarrier scheme that is referred to as Filtered Multitone (FMT) modu-
lation. FMT is a discrete time multicarrier system that deploys sub-channel 
shaping pulses (Fig.1) [4]. OFDM can be viewed as an FMT scheme that de-
ploys rectangular time domain filters. OFDM is also referred to as discrete 
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multitone modulation (DMT). FMT modulation has been proposed for spectral 
efficient transmission over broadband frequency selective channels both in 
wireline [4] and in wireless scenarios [5]. It has interesting properties in terms 
of spectral efficiency, efficient implementation, and capability to support or-
thogonal multiuser transmission [5]. The design of the sub-channel filters, and 
the choice of the sub-carrier spacing in an FMT system aims at subdividing 
the spectrum in a number of sub-channels that do not overlap in the frequency 
domain, such that we can avoid the ICI and get low ISI contributions. In an 
OFDM system the insertion of a cyclic prefix longer than the channel time 
dispersion is such that the ISI and ICI are eliminated, and the receiver simpli-
fies to a simple one-tap equalizer per sub-channel.  
 Although multitone systems are robust to the channel frequency selectivity, 
they are sensitive to carrier frequency offsets, phase noise [6], and channel fast 
time variations [7], [8]. In [9] we have studied the performance limits of FMT 
modulation and we have shown that FMT can provide both frequency and 
time diversity gains when optimal multi-channel equalization is used. How-
ever, if complexity is an issue, it is likely that linear single channel equalizers 
are used [10]. In this paper we consider a multiuser FMT system where users 
are multiplexed via the assignment of a number of available sub-channels. In 
particular, we consider the uplink scenario where users are asynchronous. Our 
objective is to determine how robust the multiuser system is to users’ time off-
sets, carrier frequency offsets, and channel time/frequency selectivity. The uni-
fied analysis that we carry out in this paper allows to evaluate the performance 
of both the FMT and the OFDM system.  
 This paper is organized as follows. In Section 2 we describe the multiuser 
FMT architecture. We particularize the description for the presence of time-
frequency offsets only, and time-frequency channel selectivity only. In Section 
3 we analyze the signal and interference power at the receiver outputs and we 
specialize the results to the FMT and OFDM cases. In Section 4 we report a 
performance comparison between FMT and OFDM. Finally, the conclusions 
follow. 

2. MULTIUSER FMT SYSTEM MODEL 

 An asynchronous multiuser FMT architecture is depicted in Fig.1. The com-
plex baseband transmitted signal ( ) ( )ux nT  of user u  is obtained by a filter 
bank modulator with prototype pulse ( )g nT  and sub-channel carrier fre-
quency /( )kf k MT= ,  0,..., 1k M= − , with T  being the transmission period 
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where ( , )
0( )u ka mT  is the k -th sub-channel data stream of user u  that we as-

sume to belong to the M-PSK/M-QAM constellation set and that has rate 01/T  
with 0T NT MT= ≥ . If the sub-carrier spacing 1k kf f −−  is larger than 01/T  
the scheme is referred to as non-critically sampled FMT, otherwise if 

1 01/k kf f T−− =  it is referred to as critically sampled FMT. In ideal FMT the 
prototype pulse has impulse response ( )0( ) sinc /g nT nT T= . In this case a 
frequency guard equal to 1/ 1/Gf MT NT= −  exists between sub-channels. A 
practical choice for the prototype pulse is to use a root-raised-cosine pulse. It 
is interesting to note that (2) allows to represent also a cyclically prefixed (CP) 
OFDM signal when the sub-carrier spacing is 1/ MT  and the prototype pulse 
is defined as ( )0( ) rect /g nT nT T= . The interpolation factor N  is chosen to 
increase the frequency separation between sub-channels, thus to minimize the 
amount of inter-carrier interference (ICI) and multiple access interference 
(MAI) at the receiver side. A possible efficient implementation of the transmit-
ter that is based on polyphase filtering is described in [4]. The discrete time 
signal is digital-to-analog converted, RF modulated, and transmitted over the 
air. Distinct FMT sub-channels can be assigned to distinct users. In this case, 
the symbols are set to zero for the unassigned FMT sub-channels: 

 ( , )
0( ) 0   for   u k

ua mT k K= ∉ , (3) 

where uK  denotes the set of uM  sub-channel indices assigned to user u .  
 At the receiver, after RF demodulation, and analog-to-digital conversion, the 
discrete time received signal can be written as 

 
1

( , ) ( )

1 0

( ) ( ) ( ; ) ( )
UN M

u k u
CH

u k n

y iT x nT g iT nT iT iTη
−

= = ∈

= − +∑∑∑
Z

, (4) 

where UN  is the number of users, ( ) ( ; )u
CHg nT mT  is the channel impulse re-

sponse and ( )iTη  is the additive Gaussian noise with zero mean contribution. 
Then ( )y iT  is passed through an analysis filter bank with prototype pulse 
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Fig. 1. Multiuser FMT system model with highlighted transmitter and receiver of user u. 
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( , ) ( )u kh nT . The sampled output at rate 01/T  corresponding to user u  and sub-
channel k  is 

 ( , ) ( , )
0 0( ) ( ) ( )u k u k

i
z lT y iT h lT iT

∈

= −∑
Z

. (5) 

 Defining in a convenient way the channel impulse response ( ) ( ; )u
CHg nT mT  

and the pulse ( , ) ( ),u kh nT  we can analyze the effects of time and frequency 
offsets and of channel time-frequency selectivity as it is shown in the next sec-
tions. 

2.1 Time and Frequency Offsets 

 In this section we consider only the effects of time and frequency offsets. 
Thus, we define 

 
( )2( ) ( )( ; ) ( )
u

fj iTu u
CHg iT nT iT e iT nTπ

τδΔ− = − − Δ , (6) 

where ( )u
τΔ  is the time offset and ( )u

fΔ  is the carrier frequency offset of user u . 
Note that we assume the time/frequency offsets to be identical for all sub-
channels that are assigned to a given user.  
 Substituting (6) into (4) we can write the received signal as follows 

 
( )1

2( , ) ( )

1 0

( ) ( ) ( )
U u

f

N M
j iTu k u

u k n

y iT x iT e iTπ
τ η

−
Δ

= = ∈

= − Δ +∑∑∑
Z

. (7) 

We consider a single user based FMT receiver (Fig. 1) where we first acquire 
time/frequency synchronization with each active user. Then, for each user, we 
compensate the time/frequency offsets, we run FMT demodulation via a bank 
of filters that is matched to the transmitter bank, and we sample the outputs at 
rate 01/T . In formulas we have 

 
( ) ( )

02 ( )( )( , ) ( )( ) ( )
u u

k fj f nT lTu k uh nT h nT e τπ
τ

+Δ +Δ −= + Δ  (8) 

and substituting (8) into (6) we can write the sub-channel output as 
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z lT y iT h lT iT e

a mT g lT mT lT

τπ
τ

η
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∈

−
′ ′ ′ ′

′ ′= = ∈

= − + Δ

= +

∑

∑∑∑
Z

Z  (9) 

where ( , )
0( )u k lTη  is the sequence of filtered noise samples, and where 

( , ),( , )
0 0( ; )u k u k

EQg lT mT′ ′  is the multi-channel impulse response. 
 We can rewrite (9) as follows 
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( , ) ( , ) ( , ),( , )
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( ) ( ) ( ),
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EQ
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=

+ + +

∑
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where we highlight the fact that the sub-channel filter output of index k  may 
suffer from ISI, ICI (from the sub-channels of index k k′ ≠  that are assigned to 
user u ), and MAI (from all sub-channels that belong to the other users) as a 
consequence of frequency overlapping sub-channels, time/frequency offsets, 
and channel time/frequency selectivity. When the sub-channels do not overlap, 
e.g., with ideal root-raised-cosine pulses with appropriate sub-carrier spacing, 
and the carrier frequency offsets of all users do not exceed half the frequency 
guard the ICI and MAI components are zero. Some intersymbol interference 
over each sub-channel may be present and can be counteracted with sub-
channel equalization.  
 In the uplink, multiuser OFDM is severely affected by time misalignments 
and carrier frequency offsets. This is due to the fact that in conventional 
OFDM, sub-channels exhibit sinc like frequency response, therefore their or-
thogonality can be easily lost in the absence of precise synchronization [2]. In 
an asynchronous multiuser environment, increased robustness and better per-
formance can be obtained with filtered multitone (FMT) modulation architec-
tures where the sub-channels are shaped with appropriate frequency concen-
trated pulses as proved above [5]. 

2.2 Channel Time-Frequency Selectivity  

 In this section we consider only the effects of time-frequency selectivity of 
the channel. We model the baseband channel with a discrete time-variant filter 

( ) ( ; )u
CHg nT mT  that comprises the effect of the DAC and ADC stages as fol-

lows   

 ( ) ( )( ; ) ( ) ( )u u
CH p

p

g iT nT iT iT iT nT pTα δ
∈Ρ

− = − −∑ , (11) 

where the time-variant tap amplitudes ( )p nTα  p∈Ρ ⊂ ]  are stationary 
complex Gaussian. Under the WSSU isotropic scattering model [3] they have 
uncorrelated quadrature components, with zero mean, correlation  

 *
, ' ' , ' 0( ) ( ) ( ) (2 ),p p p p p p p Dr nT E mT mT nT J f nTα α δ π⎡ ⎤= + = Ω⎣ ⎦  (12) 

and power-spectral density { }, ' , ' 1/( ) ( )p p p p T pR f rep R fδ=  with 

 
( ) 1/ 22

0                                            | |
( )

/( ) 1 ( / )    | |

D

p
p D D D

f f
R f

f f f f fπ
−

>⎧⎪= ⎨
Ω − <⎪⎩

 (13) 

Substituting (11) into (4) we obtain 
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 At the receiver we consider the following filter 

 ( )02( , ) ( ) ( ) kj f nT lTu kh nT h nT e π −=  (15) 

and substituting (15) into (5) we can write the k̂ -th sub-channel filter-bank 
output as   

 

ˆˆ 2( )
0 0

1
ˆ ˆ( ) ( , ) ( )

0 0 0 0
0

( ) ( ) ( )

( ) ( ; ) ( ),

kj f iTk

i
M
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k m
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a mT g lT mT lT

π

η

−

∈

− ∞

= =−∞

= −

= +

∑

∑ ∑
Z

 (16) 

where ˆ( , )
0 0( ; )k k

EQg lT mT  the equivalent impulse response between the input sub-

channel k  and output sub-channel k̂ . 
 It follows that the output in the absence of noise is   

 ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( , ) ( ) ( )
0 0 0 0 0 0( ) ( ) ( ; ) ( ) ( )k k k k k k

EQz lT a lT g lT lT ISI lT ICI lT= + + , (17) 

where the first term represents the useful data contribution, the second additive 
term is the ISI contribution, the third term is the ICI contribution. In this case 
MAI is not present because for simplicity of the analytical evaluation we con-
sider a single user scenario. An in-depth analysis of the signal over interfer-
ence power ratio is treated in the next sections.  

3. ANALYTICAL EVALUATION OF THE INTERFERENCE IN 
TIME-FREQUENCY SELECTIVE CHANNELS  

 Our objective is to determine the robustness of the system to the channel 
time and frequency selectivity as a function of the design parameters. To do so 
we evaluate the power of the interference components. The analysis is quite 
general and applies both to FMT and OFDM. The results have a practical rele-
vance because allow to understand the sources of interference as a function of 
the design parameters. In the following we assume the data symbols to be i.i.d. 
with zero mean, and average power ( ) ( ) 2

0| ( ) |k k
aM E a mT⎡ ⎤= ⎣ ⎦ .  

 First, it should be noted that  
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0
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−
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= +∑  (18) 

where  
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 ˆ ˆ( , ) ( ) ( , )
0 0 0 0( ) ( ) ( ; )k k k k k

EQ
m

z lT a mT g lT mT
∞

=−∞

= ∑  (19) 

is the contribution of the data stream transmitted on sub-channel k  to the filter 
output of index k̂ . Further, the average power of (19) equals 

  � 2ˆ ˆ( , ) ( , ) 2 ( ) ( , )
0 0 0[| ( ) | ] ( ; )k k k k k k k

z a EQ
m

M E z lT M E g lT mT⎡ ⎤= = ⎢ ⎥⎣ ⎦∑ , (20) 

where the second equality holds with independent zero mean data symbols.  
 With the WSSU scattering tapped delay line channel model we can write 

 

�

� �

( , ) ( )
0 0

, '

( ) ( )* ( )*
0 0

( ) ( ' )

( ' ) ( ' ) ( ' ).

p

k k k
z a

m p i i

k k k

M M r iT g iT i T pT lT mT

h iT i T g i T pT lT mT h i T

α= + − + −

× − − − + − −

∑∑∑
 (21) 

It should be noted that if we fix ˆk k=  in (21), and we isolate the term that 
corresponds to 0m =  we obtain the average signal power 

ˆ ˆ ˆ ˆ( ) ( ) ( , ) 2
0 0| ( ; ) |k k k k

a EQS M E g lT lT⎡ ⎤= ⎣ ⎦ , while the sum of all other terms yields the 

ISI power ˆ ˆ( ) ( ) 2
0| ( ) |k k

ISIM E ISI lT⎡ ⎤= ⎣ ⎦ . On the contrary, the total power of the 

ICI can be obtained as � ˆ( ) ( , )
ˆ

k k k
ICI zk k

M M
≠

= ∑ . 
 To proceed we define the following function 

 �ˆ( , ) ( ) ( )( ; ) ( ) ( )k k k kgh iT sT g iT sT h iT= − −  (22) 

and we can rewrite (21) as 

    �
( )

ˆ( , ) ( , )
0 0( ) ( ; )

p

k
k k k ka

z gh
m p i

MM r iT c iT pT mT lT
T α= + −∑∑∑ , (23) 

where the autocorrelation of function (22) is defined as 

     � ˆ ˆ( , ) ( , ) ( , )*

'

( ; ) ( ' ; ) ( ' ; )k k k k k k
gh

i

c iT sT T gh iT i T sT gh i T sT= +∑ . (24) 

The expression (23) is general and can be particularized for a certain choice of 
the sub-channel pulse as shown in the next sub-sections. In some cases it is 
convenient to calculate it in the frequency domain as 

 

�
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T

M R f C f pT mT lT df
T

π
α

α

−

−

= + −

= − + −

∑∑∑ ∫

∑∑ ∫
,(25) 
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where we have used the discrete-time Fourier transforms 
ˆ ˆ( , ) ( , ) 2( ; ) ( ; )k k k k j fnT

gh gh
n

C f sT T c nT sT e π−= ∑  and 2( ) ( ) .
p p

j fnT

n

R f T r nT e π
α α

−= ∑  

The first transform can be written as  

 
2ˆ ˆ( , ) ( , )( ; ) ( ; )k k k k

ghC f sT GH f sT= , (26) 

where ˆ( , ) ( ; )k kGH f sT  is the discrete-time Fourier transform of the function 
(22) 

     � ( ) �( , ) ( ) 2 ( )
1/( ; ) ( ) ( )k k k j fsT k

TGH f sT rep G f e H fπ−⎡ ⎤= ∗ −⎣ ⎦  (27) 

and ( ) ( )( ) ( )k kG f F g t⎡ ⎤= ⎣ ⎦ , ( ) ( )( ) ( )k kH f F h t⎡ ⎤= ⎣ ⎦ . 

3.1 Results for the FMT Case 

 In FMT the receiver filter-bank is matched to the transmitter filter-bank, i.e., 
*( ) ( )( ) ( )k kh nT g nT= − . Thus, 

*( ) ( ) ( )*( ) ( ) ( )k k kH f F g nT G f⎡ ⎤= − =⎣ ⎦ .  

 To proceed we need to define the prototype pulse. In the following sub-
sections we obtain results when we deploy a sinc pulse, and a root-raised co-
sine pulse.  

3.1.1 FMT with Sinc Prototype Pulse 

 If we consider a sinc prototype pulse (rectangular frequency domain pulse) 

        
0

( ) sinc nTg nT
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
       (28)            ( ){ }0 1/ 0( ) TG f T rep rect fT=  (29) 

we obtain that 

 

� �
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0( , ) 0

2 2

2
0

0

(| | 1/ )

1 ( / )

1sinc (| | )( )

D

D

fk
kk k a k

z p
m pD f D

kk

f f f TM TM
T f f f

f f f pT mT df
T

π −

+ − −
= Ω

−

⎛ ⎞
× + − − +⎜ ⎟

⎝ ⎠

∑∑ ∫
 (30) 

assuming 1/Df MT≤  (smaller than the sub-carrier spacing). It can be shown 
that (30) can be computed also in the time-domain as follows  
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k
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z
m p i
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+⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠×

− +

∑∑∑
 (31) 

Now, the signal power can be obtained by isolating the term in (30) or (31) of 
index 0m =   

 
ˆ( ) 4 2

ˆ( ) 20 0
2 2

00

2 ( 1/ ) 1sinc ( )
1 ( / )

Dfk
k a

p
pD D

M T f TS f pT df
T f Tf fπ

⎛ ⎞−
= Ω −⎜ ⎟

− ⎝ ⎠
∑ ∫ . (32) 

The power of the sub-channel ISI is 

 

ˆ( ) 4 2
ˆ( ) 0 0

2 2
0 0

2
0

0

2 ( 1/ )
1 ( / )

1sinc ( )( ) .

Dfk
k a

ISI p
m pD D

M T f TM
T f f f

f pT mT df
T

π ≠

−
= Ω

−

⎛ ⎞
× − +⎜ ⎟

⎝ ⎠

∑∑ ∫
 (33) 

The total power of the ICI (assuming sub-channel data streams with identical 
power aM ) is 

 

�

( )

4 2
ˆ( ) ( , ) 0

2 2ˆ

2
0

2 ( )
1 ( / )

sinc ( )( ) .

D

G

f
k k k a G

ICI z p
m pk k D f D

G

M T f fM M
T f f f

f f pT mT df

π≠

−
= = Ω

−

× − +

∑ ∑∑ ∫  (34) 

 Now, it should be observed that if D Gf f≤ , (34) is always zero for ˆk k≠ . 
Therefore, ICI is not present. Otherwise, if 1/G Df f MT< ≤  only two adja-
cent sub-channels can generate ICI. This is a very interesting aspect of FMT 
which exhibits no ICI when band limited pulses are used and a frequency 
guard larger than the maximum Doppler is used between sub-channels. 
Clearly, fast fading can introduce some ISI because it distorts the received sub-
channel pulse as we will discuss in more detail in the following. If the channel 
is flat and static then there is neither ISI nor ICI, i.e., the system is orthogonal.   

3.1.2 FMT with Root-Raised Cosine Prototype Pulse 

 Another possibility is to use root-raised cosine pulses 

           
0

( ) rrcos nTg nT
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
    (35)      { }0 1/ 0( ) RRCOS( )TG f T rep fT=  (36) 
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where  

 

1 1sin sin
4 41 1rrcos( ) sinc sinc

4 4 4 4

t t
t t t

t t

π π
α α

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠= + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(37) 

 

1

1
1 2

2

1 0

RRCOS( ) cos
2

0

f f

f f
f f f f

f f

π
α

⎧ ≤ <
⎪

−⎛ ⎞⎪= ≤ <⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ >⎩

. (38) 

with ( )1 0.5 1f α= −  and ( )2 0.5 1f α= + . Note that α  is the roll-off factor of 
the filter. With this pulse the computation of (26) requires some cumbersome 
algebra. For space limitation we don’t report herein the full analytical results 
but just the graphical comparison in Section 4.  

3.2 Results for the OFDM Case 

 Now, we consider a CP-OFDM scheme for which the subchannel filters are 
( ) 2( )

0( ) rect / kj f iTkg iT iT T e π=  and ( ) 2( )
1( ) rect / kj f iTkh iT iT T e π= −  where we 

have 0 ,T NT=  1 ,T MT=  and /( )kf k MT= . Using, the power of the interfer-
ence seen by sub-channel k̂  reads 

 

ˆ
1 1

ˆ 2 ( )( ' )( , ) ( )
0

0 ' 0

0 0 0 0

0 0

( ) ( ' )

'rect rect .

k k

p

M M
j f f iT i Tk k k

z a
m p i i

M lT M r iT i T e

iT lT mT pT i T lT mT pT
T T

π
α

− −
− −

= =

= −

⎛ ⎞ ⎛ ⎞− + + − + +
× ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑∑∑∑
 (39) 

Thus, the power of the useful term is 

 
1 1

ˆ ˆ( ) ( )

0 ' 0 0 0

'( ' ) rect rect .
p

M M
k k

a
p i i

iT pT i T pTS M r iT i T
T Tα

− −

= =

⎛ ⎞ ⎛ ⎞+ +
= − ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑∑∑  (40) 

The power of the sub-channel ISI is 

 

1 1
ˆ ˆ( ) ( )

0 0 ' 0

0 0

0 0

( ' )

'rect rect .

p

M M
k k

ISI a
m p i i

M M r iT i T

iT mT pT i T mT pT
T T

α

− −

≠ = =

= −

⎛ ⎞ ⎛ ⎞+ + + +
× ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑∑∑∑
 (41) 

The power of the ICI is (assuming sub-channel data streams with identical 
power aM ) 



11 

 
 
 
 
 

 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )( )k k k k
ICI TOT ISIM M S M= − + , (42) 

where the total power is 

 
1

ˆ( ) 2 0

' 0 0

'(0) rect
p

M
k

TOT a
m p i

i T mT pTM MM r
Tα

−

=

⎛ ⎞+ +
= ⎜ ⎟

⎝ ⎠
∑∑ ∑ . (43) 

4. FREQUENCY SELECTIVE FADING AND FLAT FADING 

 From the general expressions that we have obtained in the previous section 
we can evaluate the signal-to-interference power ratio: 

 
( )

( )
( ) ( )

k
k

k k
ISI ICI

SSIR
M M

=
+

. (44) 

For ease of understanding we consider first a multipath channel with quasi-
static fading, then a time-variant flat fading channel. The multipath channel 
has power delay profile /( ) .pT T

p e γ−Ω ∼  We truncate the channel at -20 dB ob-
taining PN  taps, and we normalize its power to one. The time-variant channel 
has the temporal correlation defined in (12).  

4.1 FMT and OFDM Comparison in Frequency Selective Static Fading 

 Let us assume the channel to be quasi-static but frequency selective. Then, 
we can elaborate further the formulas and specialize the results as follows. 

4.1.1 FMT with Sinc Prototype Pulse 

 ˆ ˆ( ) ( ) 2 2

0

sinc
PN

k k
FMT a p

p

pS M N
N=

⎛ ⎞= Ω ⎜ ⎟
⎝ ⎠

∑ , (45) 

 ˆ ˆ( ) ( ) 2 2

0 0

sinc
PN

k k
ISI FMT a p

m p

p mNM M N
N−

≠ =

+⎛ ⎞= Ω ⎜ ⎟
⎝ ⎠

∑∑ . (46) 

The total power of the ICI is always zero (assuming frequency confined 
pulses).  

4.1.2 FMT with Root-Raised Cosine Prototype Pulse 

 ˆ ˆ( ) ( ) 2 2

0

rcos
PN

k k
FMT a p

p

pS M N
N=

⎛ ⎞= Ω ⎜ ⎟
⎝ ⎠

∑  (47) 

 ˆ ˆ( ) ( ) 2 2

0 0

( )rcos
PN

k k
ISI FMT a p

m p

p mNM M N
N−

≠ =

+⎛ ⎞= Ω ⎜ ⎟
⎝ ⎠

∑∑  (48) 
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The total power of the ICI is always zero (assuming frequency confined 
pulses).  

4.1.3 FMT with Rect Prototype Pulse (OFDM) 

 For the CP-OFDM system, the power of the useful term, the ISI and the ICI 
read as follows 

    
min( , ) min( 1, )

ˆ ˆ( ) ( ) 2 2

0 1
( )

p pN M N N N
k k

OFDM a p p
p p N M

S M M N p
− −

= = − +

⎛ ⎞
= Ω + Ω −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  (49) 

1 1
ˆ ˆ( ) ( ) 0 0

0 0 0 ' 0 0 0

'rect rect
pN M M

k k
OFDM ISI a p

m p i i

iT mT pT i T mT pTM M
T T

− −

−
≠ = = =

⎛ ⎞ ⎛ ⎞+ + + +
= Ω ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑∑ ∑∑

 (50) 

 

1
ˆ( ) 0

0 ' 0 0

1
0

0 0

'rect

rect .

pN M
k

OFDM ICI a p
m p i

M

i

i T mT pTM M
T

iT mT pTM
T

−

−
= =

−

=

⎡ ⎛ ⎞+ +
= Ω ⎢ ⎜ ⎟

⎝ ⎠⎣
⎤⎛ ⎞⎛ ⎞+ +

× − ⎥⎜ ⎟⎜ ⎟
⎥⎝ ⎠⎝ ⎠⎦

∑∑ ∑

∑
 (51) 

In particular, as it is well known, when the channel is shorter than the CP 
( pN N Mμ≤ = − ) the useful power is ˆ ˆ( ) ( ) 2

0
PNk k

a pp
S M M

=
= Ω∑ , while the ISI 

and ICI are zero. 
 In Fig.2.A we report the SIR as a function of the normalized delay spread for 
the FMT system while in Fig.2.B we consider the CP-OFDM system. The plot 
shows that the FMT architecture is robust to channel frequency selectivity. 
Indeed the CP-OFDM system maintains the orthogonality for channels shorter 
than the CP. But for channels longer than the CP it also suffers as a result of 
ISI and ICI. 

4.2 FMT and OFDM Comparison in Flat Fast Fading 

 Now, let us assume the channel to be flat but time-variant. Elaborating fur-
ther the formulas we obtain the following particular results. 

4.2.1 FMT with Sinc Prototype Pulse 

  
ˆ( ) 4 2

ˆ( ) 0
2

2 ( ) 2
4 2

k
k a D D

FMT
M N f T f TS

N N
π π

π
⎛ ⎞Ω

= − +⎜ ⎟
⎝ ⎠

, (52) 

 
ˆ( ) 2

ˆ( ) 0 0 0
2 2

1

1 (2 )k
k a D

FMT ISI
m

M N J f mTM
m
π

π

∞

−
=

Ω −
= ∑ . (53) 
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 The total power of the ICI equals (assuming sub-channel data streams with 
identical power aM ) 

 � ( )
4 2

( ) 20 0
02 2

2 ( ) sinc ( )
1 ( / )

D

G

f
k a G

FMT ICI G
mD f D

M T f fM f f mT df
T f f fπ−

Ω −
= −

−
∑ ∫ . (54) 

 Note that (54) is zero when the sub-channels are separated more than the 
maximum Doppler. 

4.2.2 FMT with Root-Raised Cosine Prototype Pulse 

 In the case of a root-raised cosine filter the useful and ISI term have compli-
cated expressions that we don’t report for space limitations. They are a combi-
nation of Bessel and StruveH functions [11]. For the ICI term instead we can’t 
obtain a closed form, but as the sinc case we have that �( )k

FMT ICIM −  is zero if the 
sub-channels are separated more than the maximum Doppler. 

4.2.3 FMT with Rect Prototype Pulse (OFDM) 

 For the CP-OFDM system the power of the useful term, the ISI and the ICI 
read as follows 

 
1 1

ˆ( )
0 0

0 ' 0
(2 ( '))

M M
k

OFDM a D
i i

S M J f T i iπ
− −

= =

= Ω −∑∑ , (55) 

 
1 1

ˆ( ) 2
0 0

' 0 0
(2 ( '))

M M
k

OFDM ICI a D
i i

M M M J f T i iπ
− −

−
= =

⎛ ⎞
= Ω − −⎜ ⎟

⎝ ⎠
∑∑ . (56) 

 The total power of the ISI is always zero. Note that (56) is identical to the 
one reported in [8]. In Fig.3.A we report the SIR as a function of the normal-
ized delay spread for the FMT system, with sinc and root-raised cosine, while 
in Fig.3.B we consider the CP-OFDM system. The plot shows that the OFDM 
scheme is more robust than the ideal FMT scheme for large Doppler spreads. 
If we use root-raised cosine with roll-off 0.2α =  we can improve the per-
formance of the FMT. For moderate Doppler the performance of FMT can be 
improved also with sub-channel equalization.  
 Finally, we point out that when equalization is used in the FMT scheme we 
can exploit the sub-channel time-frequency diversity while the one tap equal-
izer in the OFDM scheme does not allow to pick any diversity gain [9]. As an 
example, we report in Fig.4 a comparison of bit-error rate performance in fast 
fading between FMT and OFDM that has been obtained via simulation. The 
OFDM scheme uses 128 tones while the FMT scheme uses 32 tones with a 11 
taps sub-channel equalizer. The sub-channel filter in the simulation is a trun-
cated root-raised-cosine pulse and 4-PSK modulation is used.  
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Fig. 2. SIR in frequency selective fading. 
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Fig. 3. SIR in flat time variant fading. 
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Fig. 4. BER performance in time variant fading for OFDM and FMT. 
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The figure shows that when equalization is used FMT has superior BER per-
formance than OFDM. 

5. CONCLUSIONS 

 We have presented an analysis of multiuser FMT in LEO satellite channels 
and in particular we have considered the effect of time-frequency offsets and 
time-frequency channel selectivity. We have obtained quasi-closed form ex-
pressions for the signal-to-interference power ratio in both FMT and OFDM 
systems. The sub-channel spectral containment of FMT yields increased ro-
bustness to the ICI and ISI compared to OFDM.  
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